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The use of logic in identifying and analyzing inconsistency in requirements from multiple stake-
holders has been found to be effective in a number of studies. Nonmonotonic logic is a theoretically
well-founded formalism that is especially suited for supporting the evolution of requirements. How-
ever, direct use of logic for expressing requirements and discussing them with stakeholders poses
serious usability problems, since in most cases stakeholders cannot be expected to be fluent with
formal logic. In this article, we explore the integration of natural language parsing techniques
with default reasoning to overcome these difficulties. We also propose a method for automatically
discovering inconsistencies in the requirements from multiple stakeholders, using both theorem-
proving and model-checking techniques, and show how to deal with them in a formal manner. These
techniques were implemented and tested in a prototype tool called CARL. The effectiveness of the
techniques and of the tool are illustrated by a classic example involving conflicting requirements
from multiple stakeholders.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications—Elicitation methods (e.g., rapid prototyping, interviews, JAD); methodologies
(e.g., object-oriented, structured); tools; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Natural language

General Terms: Theory, Verification, Human Factors
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1. INTRODUCTION

Requirements engineering (RE) has been defined in Zave and Jackson [1997]
as the branch of software engineering concerned with real-world goals for,
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functions of, and constraints on a software system. The definition also refers to
the relationships of these factors to precise specifications of system behavior,
and to their evolution over time and across software families.

Many studies have recognized that requirements engineering is an area of
paramount importance in software engineering research and practice. When
asked about the causes of system failures, most practitioners identify poor re-
quirements, incorrect specifications, and ineffective requirements management
as the major sources of problems in the development process [CHAOS 1995;
Ibanez 1996]. Early [Boehm 1976; Daly 1977] as well as recent [Davis et al.
1997] analyses have provided evidence that, the later in the software develop-
ment life cycle an error is detected and corrected, the more costly it is to amend
the final product. Clearly, early validation and correction of requirements can
alleviate many of the problems associated with software development. Conse-
quently, RE has the greatest leverage in the economics of software development.

One of the main classes of defects in requirements specifications is incon-
sistency. Inconsistency occurs when a specification contains conflicting, contra-
dictory descriptions of the expected behavior of the system to be built or of its
domain [Ghezzi and Nuseibeh 1998]. Such conflicting descriptions may come
(i) as a result of conflicting goals between the various parties that contribute to
the specification (usually called the stakeholders), or (ii) as a consequence of un-
coordinated changes introduced in the specification during the usual evolution
of the requirements.

Inconsistency is a major problem that permeates all aspects of software devel-
opment. It makes it impossible to design and implement a system that respects
its specification. In some cases, inconsistencies may be arbitrarily resolved by
the programmer during the implementation of the system. This means that
one of the conflicting requirements will be preferred over the others, usually
without performing an in-depth analysis of the consequences, and without noti-
fying the relevant stakeholders. Even worse, undetected inconsistency may lead
to incorrect and unreliable systems, whose faults are only discovered when it
is too late—during operation.

Two main schools have emerged with respect to the treatment of inconsis-
tency in software specifications. The first proposes techniques and tools to
ensure that inconsistency is not present in the specification at all times—
inconsistency is treated as an error, to be corrected before further activities
can take place [Sadri and Kowalski 1986; Tsai et al. 1992]. As this may be
difficult to obtain in practice, the second school proposes instead that inconsis-
tency may be tolerated, and resolved at a later stage [Balzer 1991; Gabbay and
Hunter 1991]. In this second case, useful reasoning can be performed on the re-
quirements even while inconsistencies are present in the specification [Hunter
and Nuseibeh 1998; Nuseibeh 1996]. Moreover, the requirements can continue
evolving: we say that inconsistency is nonblocking in this approach.

To effectively manage inconsistency, we need a certain degree of formal-
ity. It is relatively easy to identify explicit inconsistencies in the requirements
(e.g., when two stakeholders have provided conflicting descriptions for the same
phenomena). However, only a formal specification allows the identification of
implicit (or hidden) inconsistencies—those cases in which the inconsistency
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arises between the consequences of some requirements, rather than between
the requirements themselves.

In this article, we concentrate on a particular kind of inconsistency, logi-
cal contradiction: any situation in which some fact α and its negation ¬α can
be simultaneously derived from the same specification. Despite being so rad-
ically simple, contradiction is at the heart of many different phenomena, like
infeasible requirements (i.e., requirements that contradict domain properties),
disagreement among stakeholders (contradiction between requirements from
different sources), or more recent requirements that conflict with previous ones
(contradiction between new and old requirements). Indeed, given an arbitrary
property π that we want to hold, it is sufficient to state it among the require-
ments to have any violation of π cause a contradiction. We will consider con-
tradiction in the framework of a nonmonotonic variant of propositional logic.
Propositional logic is the simplest form of logic, and its expressive power is
limited. However, it is well suited to model a large set of problems, its deci-
sion procedure is sound and complete, and it is guaranteed to terminate. These
advantages make it the most convenient to illustrate our approach, as will be
shown in the rest of the article.

Writing and analyzing a specification in formal logic, or in most other for-
mal specifications languages, for that matter, requires high expertise [van
Lamsweerde 2000]. Often, such expertise is not readily available, and this con-
tributes to the limited use of formal methods in industrial context. Moreover,
even when an expert in formal methods is available, the stakeholders cannot be
expected to be or become experts themselves. Some translation between formal
and informal languages is thus needed. This translation itself introduces in
the process a new source of potential errors and delays that may actually make
matters worse than they were in the first place.

As a solution to this problem, we propose using natural language (NL) as a
representation language for the requirements. This choice is motivated by the
observation that NL is the language normally used by the stakeholders when
proposing, discussing, and assessing new requirements: according to a recent
survey [Mich et al. 2004], 95% of the requirements documents found in in-
dustrial practice are written in common (79%) or structured (16%) natural lan-
guage. Comparable findings have been reported in an independent survey [Neill
and Laplante 2003], showing that only 7% of the respondents used some kind
of formal language to express requirements. NL is also the only language that
can be assumed to be common to all the stakeholders. Its use encourages ex-
pression and experimentation, which are of paramount importance in the early
stages of the evolution of a specification. However, NL lacks a formal semantics,
and is thus not well suited, by itself, to the kind of formal analysis we need to
perform to discover inconsistencies. Also, NL is inherently ambiguous. Using a
controlled form of NL (e.g., forbidding the use of “some”) can reduce the degree
of ambiguity, but cannot remove it completely: a deeper analysis is needed for
that purpose (see Berry et al. [2003] for a review on the topic).

Given that logic and NL have complementary advantages and disadvan-
tages, we can envision an environment in which requirements are expressed in
NL, and automatically translated into formal logic. Analysis and reasoning is
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performed on the formal representation of the specification, and results are pre-
sented back to the stakeholders as NL sentences, thus effectively hiding the for-
mal reasoning machinery from them. The existence of a completely automatic1

proof procedure for propositional logic is of great value in this context.
This article presents three major contributions:

(1) We define a formal framework for identifying, analyzing, and managing
inconsistency in requirements specifications. In our framework, we provide
a formal definition for what others have called tolerating inconsistency,
and provide the means to discover such inconsistencies—both explicit and
hidden ones.

(2) We define a parsing technique and a translation schema that allow re-
quirements expressed as simple (controlled) natural language sentences to
be automatically transformed into propositional logic formulae, as well as
their reverse translation (from logic formulae into NL sentences).

(3) We present a prototype tool, called CARL, that we have developed as a proof
of concept. CARL implements all the techniques defined in the article, and
provides a graphical user interface to simplify the access to the various
operations that comprise our framework.

The article is organized as follows. Section 2 presents a general overview
of the various techniques that we propose, and of how they fit together to ad-
dress the problems that we outlined above. This is followed by two sections
covering the theoretical foundations and formal details of those techniques.
These sections also provide a description of how the techniques have been im-
plemented in our tool CARL. In particular, Section 3 deals with our formal
model of specifications, and with the operations that can be performed on such
specifications, while Section 4 presents the techniques for translating between
natural language and logic. A number of small examples illustrate the vari-
ous definitions. Section 5 presents a more substantial example, and shows how
CARL can be used to discover and manage inconsistencies that are introduced
in the specification by multiple stakeholders having different goals. Section 6
discusses the limitations of the approach, and compares our work with other
proposals in the literature. Some conclusions and directions for future works
complete the article. Two appendices are included: Appendix A may serve as a
quick reference for those readers not familiar with the terminology and basic
concepts of belief revision; Appendix B reports on the results of some tests on
the effectiveness of the translation between NL and logic performed by CARL.

2. OVERVIEW

In this section, we present a broad overview of our approach to handling in-
consistency in NL requirements, while we present the details in Sections 3
and 4. The reader may refer to Figure 1 for a graphical depiction of the entire
process.

1Theorem provers for more sophisticated forms of logic usually require human intervention to guide
the derivation of a proof, thus defeating the whole purpose of using NL for requirements.
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Fig. 1. A general overview of our approach to inconsistency handling in NL requirements, as
embodied by CARL.

In the course of the requirements evolution process, requirements are intro-
duced by a number of stakeholders. At this stage, requirements are expressed
as natural language sentences, and each stakeholder can state the require-
ments that are significant from her particular viewpoint. These NL requirement
are then submitted to a tool (CARL), and subjected to a series of transforma-
tions: (i) typographical adjustments, tokenization, and synonym substitution;
(ii) parts-of-speech tagging; (iii) parsing, and transformation into a set of parse
trees, and (iv) translation into a set of logic formulae.

These logic formulae are then added to the specification (which is represented
as a theory in default logic), either as requirements (a property that is desired to
hold), or as constraints (a property that is desired not to hold—notice that this
is different from a property that is not desired to hold), depending on the type
of operation initially requested by the stakeholder. The various requirements
operations are modeled as belief revision operations on the theory that repre-
sents the specification. As a result of these changes, inconsistencies may arise
in the specification; the existence of such inconsistencies is checked by using a
theorem prover as part of the processing for the change. If any inconsistency
is found, a detailed report and the various alternative interpretations are pre-
sented to the stakeholders, providing an opportunity to examine the situation.
In any case, the specification is revised to accommodate the new requirements,
possibly demoting other requirements in the process.
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Fig. 2. An algebraic map of the most important domains and functions that will be used in the
article.

A different, more elusive type of inconsistency can be revealed by us-
ing a model-checking approach.2 This allows CARL to provide actual exam-
ples of situations that would expose hidden inconsistencies (these are in fact
counterexamples that confute the theorem “the specification is consistent”),
thus helping the stakeholders in focusing their analysis to specific cases.

In keeping with our general goal of simplifying the interaction with the stake-
holders, the use of logic is completely hidden from them. Both the input and the
output from CARL are entirely in natural language (although the logic forms of
requirements and specifications can also be inspected, if so desired). Moreover,
a graphical user interface is provided to further reduce the complexity of the
interaction: stakeholders should concentrate on the system they are trying to
specify, rather than on the tools they are using to do so.

Formally, we will use a number of domains and functions to define all the
transformations and operations in our approach. These domains and functions
are shown in Figure 2, and will be introduced in due course in the rest of the

2In this article, we use the term model checking in its pristine, more general sense, that is, “To
algorithmically check whether a program (the model) satisfies a specification” [Clarke et al. 1986].
Other authors have used the term model finding in this sense, and model checking exclusively in
reference to checking temporal logic properties of state space models, which is different from what
CARL does.
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article. The reader may use Figure 2 as a map of the general context for each
of the functions defined in Sections 3 and 4.

The figure also includes two informally defined functions, expression and
comprehension. These model two basic assumptions: (i) that the stakeholders
are able to express their informal ideas (about the system that is being specified
and about its domain) as NL sentences, and (ii) that the stakeholders are able
to comprehend descriptions of inconsistencies that are presented as sets of
NL sentences. This article does not address the issue of how to ensure that the
requirements expressed reflect the intuitive understanding of the stakeholders.
It should be noted, however, that the assumptions we make on the abilities of
the stakeholders are much weaker than those needed by most heavy-weight
formal methods. We regard that as an advantage of our approach.

3. USING DEFAULT REASONING IN REQUIREMENTS EVOLUTION

3.1 Formal Model

Our formal model for the management of inconsistency in changing require-
ments (which is based on the one originally introduced in Zowghi [1999], Zowghi
et al. [1996], and Zowghi and Offen [1997] and implemented in a prototype
called CARET [Zowghi et al. 1997]) draws on results from two distinct strands
of research in AI, default reasoning and belief revision. First, from research in
the area of default reasoning, it obtains a knowledge representation scheme
which permits the explicit representation of three distinct classes of entities
in a requirements specification. These are the firm (essential) requirements
that must necessarily be satisfied, the defeasible requirements (requirements
that are tentative and which may not hold for all subsequent models), and the
discarded requirements (requirements that must not be included in the spec-
ification). Second, from research in the area of belief revision, it draws on a
competence theory, that is, a set of semantically motivated correctness criteria
and on a performance theory, which offers an effective starting point for the
construction of operators for requirements evolution.

We adopt a version of nonmonotonic reasoning inspired by the THEORIST
framework for default reasoning [Poole 1988; Poole et al. 1987]. This choice
is motivated by the fact that the THEORIST framework represents a simple,
yet elegant, approach to default reasoning. More importantly, it meets the re-
quirements and properties of a formal model for management of changing re-
quirements identified in Zowghi [1999]. THEORIST provides a mechanism for
explaining observations in terms of facts and hypothesis. We apply this mecha-
nism to requirements, and extend it by providing operators for evolving these
sets of facts and hypothesis, and by further adding the concept of a scenario,
that is, a provisional set of observations describing a possible state of the world.

We decompose a requirements specification (or simply a specification) into
three distinct sets of assertions (buckets). These are the assertions that must
necessarily hold, called facts (denoted by the set F); the defeasible, or tentatively
true assertions, called hypotheses (denoted by the set H), and the assertions that
must necessarily not hold, called constraints (denoted by the set C).
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Definition 3.1 (Specification). A default theory (or specification) is a triple
(F, H, C) where F, H, and C are sets of propositional formulae, and F ∪ C is
satisfiable.

In our formal model, a requirements specification is viewed as a default the-
ory. F contains assertions about the domain, which constitute a domain model,
and essential requirements that the stakeholders are not prepared to give up.
Thus, F describes the world as it would be after a system satisfying all es-
sential requirements has been deployed in the domain. The elements of set H
(hypotheses) are used to represent tentative or defeasible requirements, which
may not always hold during the evolution process. Hypotheses are addition-
ally useful for representing domain-specific default requirements (such as the
requirement that “all vehicles on public roads must have a driver”). Elements
of set C convey the explicit notion of disbelief (i.e., discarded requirements).
These are conditions that must not hold in a requirements model. Constraints
are specially useful for recording, in a semantically meaningful manner, the
withdrawal (or retraction) of requirements.

Example 3.2. Let us consider a specification detailing the domain of public
roads. Parts of the specification could describe how bus lanes are to be used. In
this case, the various buckets could include the following information:

F (facts) H (hypotheses) C (constraints)
emergency(ambulance) →

drive(ambulance,bus lane)
emergency(car) →

drive(car,bus lane)
drive(bus,bus lane)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)

¬park(car,bus lane)

This information can be interpreted as follows: normally, ambulances and
private cars cannot drive on bus lanes (from H). However, F states that, as a
matter of fact, ambulances and private cars can indeed drive on bus lanes, if
they are attending an emergency. Buses always drive on bus lanes. Finally, the
contents of C constrain the future evolution of the specification so that private
vehicles are never allowed to park on bus lanes (ambulances will be able to
park on those lanes, if so permitted by F or H).

It should be noted that, while we hold both domain description statements
and requirements in the same buckets for the purpose of our framework, their
roles and the ways they evolve during the requirements engineering process
are markedly distinct. See Zave and Jackson [1997] for the distinction between
indicative domain descriptions and optative requirements, and Zowghi and
Gervasi [2004] for a full treatment of their evolution, with a particular em-
phasis on consistency and completeness properties.

Default reasoning in our framework involves identifying extensions, where
each extension consists of the set of facts F together with a subset of the set of
hypotheses (h ⊆ H) that is consistent with the facts. An additional proviso is
that each extension must be consistent with the set of constraints. Constraints
can thus be used to specify what assertions may not appear in an extension (this
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is achieved by placing their negations in the set C). Extending Poole [1988], we
introduce the following definitions:

Definition 3.3 (Extension). Given a specification S = (F, H, C), and a set
of assertions h ⊆ H, an extension of S on h is a set of assertions e such that
e = F ∪ h ∪ C and e is consistent.

It follows from the definition that an extension is a consistent subset of
F ∪ H ∪ C. Among the many possible extensions of a specification, we are inter-
ested only in those that minimize the loss of information from H. This choice
is in accordance with the principle of minimal change that is the founding
principle in the AGM paradigm [Alchourrón et al. 1985]. We provide thus a
characterization of those extensions that are maximal as follows:

Definition 3.4 (Maximal Extension). Given a specification S = (F, H, C), a
maximal extension of S is an extension e for which �∃h′ such that h ⊂ h′ and
F ∪ h′ ∪ C is an extension.

Naturally, a specification may have multiple maximal extensions—each in-
ternally consistent, but mutually inconsistent with all the others. This phe-
nomenon is shown in the following example.

Example 3.5. Consider the extended version of the specification (from
Example 3.2) given below, in which we have added the hypothesis that an am-
bulance is currently servicing an emergency call:

F (facts) H (hypotheses) C (constraints)
emergency(ambulance) →

drive(ambulance,bus lane)
emergency(car) →

drive(car,bus lane)
drive(bus,bus lane)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)
emergency(ambulance)

¬park(car,bus lane)

This specification allows three maximal extensions, namely:

e1 = {emergency(ambulance) → drive(ambulance,bus lane),
emergency(car) → drive(car,bus lane),
drive(bus,bus lane), ¬drive(car,bus lane),
¬drive(ambulance,bus lane), ¬park(car,bus lane)},

e2 = {emergency(ambulance) → drive(ambulance,bus lane),
emergency(car) → drive(car,bus lane),
drive(bus,bus lane), ¬drive(car,bus lane),
emergency(ambulance), ¬park(car,bus lane)},

e3 = {emergency(car) → drive(car,bus lane),
drive(bus,bus lane), ¬drive(car,bus lane),
emergency(ambulance), ¬drive(ambulance,bus lane),
¬park(car,bus lane)}.
ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 3, July 2005.
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The differences between the three can be better appreciated by writing them
in terms of F, H, and C:

e1 = F ∪ H ∪ C \ {emergency(ambulance)},
e2 = F ∪ H ∪ C \ {¬drive(ambulance,bus lane)},
e3 = F ∪ H ∪ C \ {emergency(ambulance) → drive(ambulance,bus lane)},

meaning that there are three possible consistent views of the world: either we
negate that an ambulance can be attending an emergency (e1), or we give up
the assumption that ambulances do not drive on bus lanes (e2), or we give up
our notion that an ambulance serving an emergency can drive on bus lanes. It
is easy to see that, of the three facts that we have dropped, respectively, in e1,
e2, and e3, any two can be accepted at the same time, whereas having all three
of them would cause an inconsistency.

Obviously, e2 is more in line with our understanding of how the real world
works, although a budget-conscious government might also find e1 interesting,
and e3 could be a viable and convenient alternative to ensure smooth bus traffic
on public roads.

Our specification also presents other extensions that are not maximal, for
example:

e′
1 = F ∪ H ∪ C \ {emergency(ambulance), ¬drive(car,bus lane)},

e′
2 = F ∪ H ∪ C \ {¬drive(ambulance,bus lane), ¬drive(car,bus lane)},

e′
3 = F ∪ H ∪ C \ {emergency(ambulance), ¬drive(ambulance,bus lane),

¬drive(car,bus lane)},
e′

4 = F ∪ H ∪ C \ {emergency(ambulance), ¬drive(ambulance,bus lane)},

but only the maximal extensions e1–e3 are relevant for the choice of how the
inconsistency can be resolved.

Using the relative degree of importance associated with each requirement
(referred to as epistemic entrenchment ordering in belief revision terminol-
ogy [Gärdenfors 1988], and as requirements priority in RE jargon), the issue
of which extension of the current default theory should be preferred over the
others at each step of evolution can be addressed. Here, by step of evolution we
mean any modification to the requirements; a formal model for these modifica-
tions will be provided in Definitions 3.6 and 3.9 below.

Representing the degree of epistemic entrenchment of individual require-
ments in a specification is a nontrivial task. There are many factors that may
contribute to such ordering. Perhaps the most important ones are the cost and
project schedule constraints, but the relative importance of the stakeholders
can also be taken into account. Also, normally domain descriptions are more
entrenched than requirements, in that requirements express desires that can
be more easily renounced or delayed for future developments. We do not inves-
tigate the issue in this article, assuming that the relative importance of the
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various requirements is assigned by the user (possibly assisted by some tool or
formal technique3).

Parallel exploration of alternatives has the advantage that the consequences
of abandoning a belief can be explored before a decision is made. Such parallel
exploration of several internally consistent, but mutually inconsistent, belief
systems may of course give an external observer the illusion of a single incon-
sistent system [Kowalski 1979]. This is precisely what the advocates of “toler-
ating inconsistency” [Balzer 1991; Finkelstein et al. 1994; Gabbay and Hunter
1991] have been interested to achieve. In a way, what is being achieved here
is well beyond just tolerating inconsistency in that it also involves delaying
the resolution of inconsistencies, which is what our formal framework supports
intrinsically.

By holding on to the requirements that are responsible for causing an in-
consistency (and were previously believed to be less important than those
that remained in the specification), they have both been tolerated and have
given the stakeholders another chance to revisit them at future stages of the
evolution of the requirements. The framework presented in this article pro-
vides the opportunity for the requirements analyst to present to the prob-
lem owners the consequences of changing the relative rank of a requirement
(that is, its epistemic entrenchment) with respect to the inconsistency it can
create.

We model two different types of evolution steps. The first, revision, is used to
introduce new information into a specification, while the second, contraction,
is used to state constraints and to withdraw previous assertions. As a result of
these operations, inconsistencies may be introduced into the specification. In
such cases, the user may be given the option to select interactively which of
the possibly many maximal extensions should be used. The formal definition of
these two operations is given below.

Definition 3.6 (Revision). Given a specification S = (F, H, C) and an asser-
tion α, we define the operator Rev : Spec × Asr → Spec as

Rev((F, H, C), α) =
(
F∗

α, H ∪ (
F \ F∗

α

)
, C−

¬F∗
α

)
,

where

—Spec is the set of all possible specifications, and Asr is the set of all possible
assertions (i.e., formulae in the usual propositional logic language),

— A∗
α denotes the set A, revised according to the AGM postulates [Gärdenfors

1988] so that the new assertion α is included, and all contradictory assertions
already in A are removed from A, and

— A−
B denotes the set A, contracted according to the AGM postulates, so that all

the assertions in B are removed from A, together with any other assertion
in A implying any of the removed ones.

3In Section 4, we will assume a coarse set of priorities based on the mood of the main verb of each
requirement.
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Remark 3.7. The A∗ and A− operations maintain consistency of A, meaning
that, when applied to consistent sets, the results will still be consistent. It is
thus important to start with a consistent set. In our model, we assume that
all the requirements are introduced in the specification by means of the Rev
operator, starting from an empty specification S0 = ({}, {}, {}) that is trivially
consistent.

Rev((F, H, C), α) denotes the outcome of revising a specification, (F, H, C) with
an input α (i.e., a new requirement). The result is itself another default the-
ory. Here, F∗

α means that the set of essential requirements in F is revised
with the new requirement α. Then H ∪ (F \ F∗

α) means that the set of defea-
sible requirements H is augmented to include those requirements that be-
longed to the previous set of essential requirements F, but do not belong to
the revised set F∗

α. This action is essentially demoting the status of this spe-
cial class of requirements from “essential” to “tentative.” Finally, the revised
set of essential requirements is contracted from the prior set of constraints
C so that the consistency of the new set of constraints C−

¬F∗
α

with new F is
ensured.

Example 3.8. Let us consider once again the specification S from
Example 3.2. We want to enrich our description by stating that, if a bus lane
is occupied by a bus, no other vehicle can use it (in a more refined specifica-
tion, we would be considering overtaking as well). To this end, we revised the
specification with the new requirement

α = drive(bus,bus lane) → ¬drive(ambulance,bus lane) ∧ ¬drive(car,bus lane).

The addition of α to F does not cause any inconsistency, so the result of this
revision is simply S ′ = (F ∪ α, H, C). In other words, α is simply added to F
while the other buckets are unchanged. However, if we want to revise S ′ stating
that there is in fact an emergency, as expressed by

β = emergency(ambulance),

we have that S ′′ = Rev(S ′, β) is given by

F (facts) H (hypotheses) C (constraints)
emergency(ambulance)→

drive(ambulance,bus lane)
emergency(car)→

drive(car,bus lane)
drive(bus,bus lane)→

¬drive(ambulance,bus lane)
∧¬drive(car,bus lane)

emergency(ambulance)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)
drive(bus,bus lane)

¬park(car,bus lane)

where as a consequence of the introduction of emergency(ambulance), the
conflicting assertion drive(bus,bus lane) has been demoted to a hypothesis.
These two assertions are in fact inconsistent, as emergency(ambulance) implies
drive(ambulance, bus lane) and drive(bus,bus lane) implies ¬drive(ambulance,
bus lane).
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The second type of operation we model, contraction, involves stating a con-
straint, thus reducing the space of possible behaviors of the system. Contraction
is also used to retract an existing requirement from the specification, while
recording the fact that it is no longer desired to hold (this is unlike the AGM
contraction operator, where the contracted information is definitively lost: see
Appendix A.1). Once again, contraction may cause an inconsistency in the re-
sulting requirements model. The inconsistency may be resolved in multiple
possible ways. The operation of contracting a sentence α from a specification
(F, H, C) is defined as follows:

Definition 3.9 (Contraction). Given a specification S = (F, H, C) and an as-
sertion α, we define the operator Con : Spec × Asr → Spec as

Con((F, H, C), α) =
(
F−

¬C∗
¬α

, H ∪
(
F \ F−

¬C∗
¬α

)
, C∗

¬α

)
,

where we use the ∗ and − operators as in Definition 3.6.

Here Con((F, H, C), α) denotes the outcome of contracting a requirement α

from the current requirements model denoted by (F, H, C), which is itself an-
other default theory. As can be observed from the obvious similarities of the two
operations, the contraction operator is symmetrically opposite to the revision
operator. First, through revising C by ¬α, (i.e., C∗

¬α), it is guaranteed that new C
contains ¬α. This means that no extension of the resulting theory shall contain
α which is the essence of contraction operation. The second set H ∪ (F \ F−

¬C∗
¬α

),
is identical to that of revision operator where discredited requirements from
F are demoted to the status of tentative requirements. The set of tentative re-
quirements H is augmented to include those requirements that belonged to the
previous set of essential requirements F but do not belong to the revised set
F∗

α. Finally the negation of C∗
¬α is contracted from F to guarantee that new F is

consistent with new C.

Example 3.10. Let us consider again our budget-conscious government
from Example 3.5, and let us suppose that it has been decreed that ambu-
lances should not be allowed to drive in bus lanes at all. In our model, this
can be represented as a contraction of γ = drive(ambulance,bus lane) from the
specification S ′′.

According to Definition 3.9, we must first revise C by ¬γ , that is,
¬drive(ambulance,bus lane). The revised C is

C = {¬park(car,bus lane), ¬drive(ambulance,bus lane)}.
Then, ¬C is contracted from F. At this stage, we have an inconsistency, since F
implies drive(ambulance,bus lane):

(a) emergency(ambulance)∧
(b) emergency(ambulance) → drive(ambulance,bus lane) |=
(c) drive(ambulance,bus lane).

Thus, we have a choice: either we discard (a), or we discard (b). We can imag-
ine that even a budget-conscious government would not deny that ambulances
can have emergencies (after all, that is what they are for!), so (b) is probably
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less entrenched than (a). Thus, (b) will be demoted and moved to H, giving rise
to the new specification in the table below.

F (facts) H (hypotheses) C (constraints)
emergency(car) →

drive(car,bus lane)
drive(bus,bus lane) →

¬drive(ambulance,bus lane)
∧¬drive(car,bus lane)

emergency(ambulance)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)
drive(bus,bus lane)
emergency(ambulance) →

drive(ambulance,bus lane)

¬park(car,bus lane)
¬drive(ambulance,bus lane)

Definitions 3.6 and 3.9 ensure that requirements are never discarded. A re-
quirement, once added via a revision operation, is contained in either F or H
at all future times. Thus, if a new requirement r2 contradicts an existing re-
quirement r1 contained in F, then r1 is demoted to the status of a default (i.e.,
it becomes an element of H); thus, no maximal extension of the specification
will contain r1. If, however, r2 is later contracted, r1 can reappear in a max-
imal extension of the resulting specification. One may view every element of
F and C as representing a prior requirements evolution step. Every element
of F represents a prior revision, while every element of C represents a prior
contraction. Thus, priority relations on F and C, which are the only two prereq-
uisites necessary for generating a consistent outcome of a requirements evolu-
tion step, can be obtained by merely requiring an ordering on the belief change
steps.

As appeared in Example 3.8, we need to make a distinction between
two types of facts when analyzing specifications: facts that are provision-
ally true (e.g., emergency(ambulance)) and facts that are always true (e.g.,
drive(bus,bus lane)→ ¬drive(ambulance,bus lane)). The latter represent inher-
ent properties of the domain, while the former cover two types of situations
that we may need to consider for analysis purposes. The first one describes an
instance of a circumstance that may arise (e.g., emergency(ambulance), indicat-
ing the temporal extent during which an ambulance is serving an emergency).
The second one is a speculation of a hypothetical condition for exploring “what
if” analysis (e.g., emergency(ambulance)→ ¬drive(bus,bus lane)). These types of
facts are used to investigate the possible consequences of new situations (e.g.,
new regulation asking buses to leave their lane if an ambulance is serving an
emergency). To cater for these types of analysis, we introduce the concept of a
scenario.

Definition 3.11 (Scenario). Given a specification S = (F, H, C), a scenario s
is a set of asserted or negated atoms such that the following properties hold:

(1) ∀a ∈ s, a ∈ H(F ∪ H ∪ C),
(2) ∀¬a ∈ s, a ∈ H(F ∪ H ∪ C),
(3) ∀a ∈ s, (F ∪ C) �|= a ∧ (F ∪ C) �|= ¬a, and
(4) ∀¬a ∈ s, (F ∪ C) �|= a ∧ (F ∪ C) �|= ¬a,

where H(A) denotes the Herbrand base for A (i.e., the set of all ground atoms
occurring in A).
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When writing specifications, most predicates are likely to be written as con-
ditional clauses, describing causal dependencies like emergency(ambulance)→
drive(ambulance,bus lane). On the other hand, when analyzing specifications,
we will be more often interested in the actual behavior that is specified for a
certain set of circumstances. To this purpose, we introduce the following notion
of consistency under a certain scenario:

Definition 3.12 (S-Consistency). A specification S = (F, H, C) is said to
be S-consistent under a given scenario s (denoted by �(S, s)) if s ∪ F ∪ C is
consistent.

Example 3.13. A specification can appear consistent under a certain sce-
nario, and expose inconsistencies under a different one. Consider for example
the specification resulting from the first revision in Example 3.8, shown again
for clarity in the following table:

F (facts) H (hypotheses) C (constraints)
emergency(ambulance) →

drive(ambulance,bus lane)
emergency(car) →

drive(car,bus lane)
drive(bus,bus lane) →

¬drive(ambulance,bus lane)
∧¬drive(car,bus lane)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)
drive(bus,bus lane)

¬park(car,bus lane)

This specification is S-consistent with respect to the scenario

s1 = {emergency(ambulance)}
but is not S-consistent under the scenario

s2 = {emergency(car), drive(bus,bus lane)}.
In fact, under s2 both drive(car,bus lane) and ¬drive(car,bus lane) are en-

tailed by the specification, thus exposing an inconsistency that was latent in
the specification.

The Rev and Con operators always keep specifications internally consistent.
To expose latent inconsistencies, those that only manifest themselves under a
certain scenario, we define the set of “problematic scenarios” PS, as follows:

Definition 3.14 (Problematic Scenarios). Given a specification S, the set of
the problematic scenarios PS(S) is

PS(S) = {s | s is a scenario for S ∧ ¬�(S, s)}.
When computing problematic scenarios, we are interested mostly in the

smallest scenario that exposes a certain inconsistency, to foster both computa-
tional efficiency and economy of presentation to the user. Minimal problematic
scenarios are defined as follows:

Definition 3.15 (Minimal Problematic Scenario). A problematic scenario s
for a specification S is minimal if

∀s′ ⊂ s, �(S, s′).
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Minimal problematic scenarios are the best characterization for those unfore-
seen cases where a set of circumstances not explicitly ruled out by constraints
in C materializes, but the stakeholders do not agree on what the behavior of
the system should be in that case. By presenting minimal problematic scenarios
back to the user, together with a trace of the inconsistency, the latent problem
is exposed, and further investigation and discussion among the stakeholders
can take place.

For practical purposes, it is convenient to partition scenarios into two sets,
one given by the user and another, derived from the first, containing additional
atoms. Formally, these two sets are defined as follows:

Definition 3.16 (Partial Scenario, Completion). Given a specification S =
(F, H, C), a partial scenario si is a (possibly empty) scenario for S such that

∃a ∈ H(F ∪ H ∪ C) : (F ∪ si ∪ C) �|= a ∧ (F ∪ si ∪ C) �|= ¬a.

Given a partial scenario si such that �(S, si) holds, a completion s j
i of si is any

nonempty scenario of (F ∪ si, H, C).

The intuition behind the definition above is that a partial scenario is a user-
provided set of assignment of truth values to some of the atoms in the specifi-
cation, whereas an automatically generated completion assigns truth values to
some of the atoms whose value was not provided in the partial scenario. Notice
that both partial scenarios and completions are themselves valid scenarios, as
is the set-theoretic union of a partial scenario with any one of its completions.
Note also that we do not ask that completions provide truth value assignments
for all the unbound atoms in the specification. Thus, minimal problematic sce-
narios can be represented as pairs (si, s j

i ). We will see in Section 5 how this
representation turns out to be useful in practice to simplify user interaction on
certain kinds of consistency analysis.

Example 3.17. Let us consider again the specificationS from Example 3.13:

F (facts) H (hypotheses) C (constraints)
emergency(ambulance) →

drive(ambulance,bus lane)
emergency(car) →

drive(car,bus lane)
drive(bus,bus lane) →

¬drive(ambulance,bus lane)
∧¬drive(car,bus lane)

¬drive(car,bus lane)
¬drive(ambulance,bus lane)
drive(bus,bus lane)

¬park(car,bus lane)

The following are some of the valid partial scenarios for S:

s0 = {},
s1 = {emergency(ambulance)},
s2 = {¬emergency(ambulance), emergency(car)}.

On the contrary, the set {¬park(car,bus lane)} is not a valid partial scenario,
since it is not a scenario for S (it violates condition 4 of Definition 3.11).

s1
0 = s1 and s2

0 = s2 are valid completions of s0, as is any other par-
tial scenario. s2 is not a valid completion of s1, since both mention the atom
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Fig. 3. A set of requirements (left) and the representation of its model as a CNF tree (right).

emergency(ambulance). The following are some of the valid completions of s1:

s1
1 = {drive(car,bus lane)},

s2
1 = {¬drive(car,bus lane)},

s3
1 = {drive(car,bus lane), ¬drive(bus,bus lane)}.

The set {drive(ambulance,bus lane)} is not a valid completion of s1, since it is not
a valid scenario for (F ∪ s1, H, C). In fact, F ∪ s1 |= drive(ambulance,bus lane),
thus violating condition 3 of Definition 3.11.

3.2 Notes on the Implementation

After having introduced formally our framework for the treatment of inconsis-
tency, we can turn our attention to how its most important operations can be
implemented in practice.

Our prototypical tool CARL maintains two representations of the require-
ments: (1) as a relational database for long-term persistency, also storing ad-
ministrative details and house-keeping information about each requirement,
and (2) as a set of bounded-depth, in-memory trees of conjunctive normal form
(CNF) expressions, one for each bucket. In the tree representation, exemplified
in Figure 3, the root always consists of a single n-ary conjunction (and) node,
whose children are either (positive or negative) atoms, or n-ary disjunction (or)
nodes, whose children are in turn positive or negative atoms. A number of sim-
plification rules are applied every time the tree is updated, so as to maintain
its structure and minimality. The tree is guaranteed to be equivalent to the
conjunction of all the requirements in the set.

As we have seen, the user can insert new requirements into the specification
by invoking the Rev() operator. To operationalize Rev((F, H, C), α), CARL first
converts α into CNF, thus reducing it into a canonical form α′. If α′ is tautologi-
cally false (e.g., emergency(ambulance)∧¬emergency(ambulance)), or tautologically
true, it is rejected altogether, with an appropriate error message. If α′ is already
in F, nothing needs to be done, and CARL informs the user about the fact.4 If
α′ is found in H or C, CARL informs the user that it will be now accepted as

4Notice that the requirement may still be added to the database, for example, if the preexisting
copy was requested by a different stakeholder.
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a fact—that is, it will be moved from H or C to F—and asks for confirmation
before proceeding.

If confirmation is given (or not needed), CARL adds α′ to the F tree, and
checks, via a variant of the standard semantic tableaux algorithm (see, for
example, Reeves and Clarke [1990]), whether the resulting set is consistent.
If it is, nothing else needs to be done, by Definition 3.6 and AGM postulates
(∗3), (∗4), and (−3) (see Appendix A). Otherwise, all maximal extensions of the
new F that include α′ are enumerated, and presented to the user (as natu-
ral language descriptions, as we will see in Section 4), in decreasing order
of cumulative priority. The user is then asked to choose which one, among
the various maximal extensions, should be used to continue the analysis—
or, equivalently, which one among the conflicting requirements should be de-
moted to the state of hypothesis, as we have seen in Example 3.8. Let us
stress once more that by so doing the inconsistency is not eliminated, but
rather recorded and tolerated until it can be resolved at some future time.
Once a maximal extension M has been chosen, H and C are adjusted according
to Definition 3.6, and a log record of the operation is stored in the database
for future reference and traceability. The treatment of Con((F, H, C), α) is
similar.

Scenario operations are implemented as follows. At any stage, the user can
enter a partial scenario, that is, a set of plain facts (each corresponding to a
single positive or negative atom in H(F ∪ H ∪ C) ). These partial scenarios can
be assigned a name, saved, reopened, and edited at any time. When asked to
perform an S-consistency check, CARL presents to the user a list of the partial
scenarios that have been saved, supplemented with the empty partial scenario
s0 = {}. The user can then choose one or more partial scenarios against which
S-consistency has to be checked. For each selected partial scenario si, CARL
enumerates all possible completions s j

i , and checks whether F ∪ C ∪ si ∪ s j
i is

consistent. If it is not (i.e., �(S, si ∪ s j
i ) is false), a latent inconsistency has

been discovered, and si ∪ s j
i are the conditions under which the inconsistency is

exposed. Of course, choosing the empty partial scenario results in all possible
scenarios being checked.

In particular, for each si the tool computes first the set U of unbound atoms,
that is, all atoms a that appear in the requirements and whose truth value is
not known (either by explicitly having a or ¬a in the requirements, or by de-
ducing its value as a consequence of other facts). Then, all possible completions
are generated, by considering all the possible subsets u of U , and assigning all
the combinations of truth values to members of u.5 Scenarios which lead to an
inconsistency are then presented to the user for further analysis and investi-
gation. These can also be saved, becoming themselves new partial scenarios, to
be used in the subsequent evolution of the requirements.

5To obtain reasonable performances, particular care is taken to avoid generating scenarios whose
outcome is already known, that is, any scenario v with v ⊆ u such that u ∪ F ∪ C is already
known to be consistent, or any scenario w with u ⊆ w such that u ∪ F ∪ C is already known to
be inconsistent. The latter condition has the effect of restricting the computation to the minimal
problematic scenarios of Definition 3.15.
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Finally, the user can ask CARL to show the consequences, or implied facts
entailed by the requirements (optionally augmented by any currently selected
partial scenario). Due to the way the CNF tree representation is maintained,
these can be accessed directly by taking all the first-level children of the root
that consist of a single atom. As an advanced feature, the user can also ask to
be shown the complex implications of the requirements that are given by the
or children of the root. However, these complex implications are usually more
difficult to interpret in a meaningful way; hence we do not consider this to be
standard usage of the tool.

3.3 Summary

To summarize, in this section we have provided a formal definition of a model
for the controlled evolution of a set of requirements. In our model, multiple
stakeholders work on a specification by revising and contracting requirements;
if any of these operations causes an inconsistency, a set of alternative maximal
extension is generated. The stakeholders can then analyze the situation, and
choose a consistent subsets of the requirements to continue working with. In
any case, their decision is recorded (either in H or in C), and can be changed at
a later stage without loss of information.

Moreover, an automatic scenario analysis can be performed at any time on a
specification, in order to discover combinations of events in the real world that
could trigger latent inconsistencies in the specification. The stakeholders can
then analyze the problematic scenarios and decide which modifications to the
specification are needed to deal with the problems that were found.

In order to meet our usability goals, however, all those interactions between
the stakeholders and the support system must be made as simple and intuitive
as possible. This is the subject of the next section.

4. BRINGING LOGIC TO THE USER

In a typical industrial or commercial setting, stakeholders can often have diffi-
culties in expressing their intended requirements directly in some sort of formal
language (including logic-based languages). As the elicitation process involves
a substantial amount of communication, both between a stakeholder and the
requirements engineer, and among the stakeholders themselves, some kind of
common language must be used to express the requirements in the course of
the RE process.

We advocate that natural language can serve this role, provided that some
restrictions are placed on its use in order to encourage the expression of precise
requirements. Controlled natural language of this sort has long been suggested
as an effective means for recording and discussing requirements [Dalianis 1992;
Fantechi et al. 1994; Gervasi and Nuseibeh 2002; Hars 1996; Juristo et al. 2000;
Macias and Pulman 1993; Mich 1996; Rolland and Proix 1992]. In order to allow
the stakeholders to express their requirements in natural language, some form
of automatic translation of requirements expressed in restricted NL into logic
formulae and back is needed. Several studies exist on the translation of natural
language into logic of different kinds, including Ali [1994], Fantechi et al. [1994],
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Fig. 4. Processing of requirements in the CARL system. NL Requirements are first parsed to
produce a set of parse trees, then the trees are translated into logic formulae and analyzed to
discover and report any inconsistency.

Fuchs and Schwitter [1995], Rolland and Proix [1992], and Webber [1983]. In
most cases, these studies have targeted special-purpose logics (e.g., Linear Tem-
poral Logic), which has resulted in very restrictive controlled languages. In
contrast, in this work we maintain an information extraction perspective, and
try to accept a less restricted language.

In order to support the various operations that have been defined in
Section 3, we need to define a parsing process to translate NL sentences into
logic formulae, and an unparsing process to translate back those formulae (or
more precisely, a subset thereof) into NL sentences. The entire process is de-
picted in Figure 4 (the reader may also want to refer to Figure 2 for a global
view on the functions and domains that will be used in the formal definitions
in the following).

The first step of the parsing process consists of a preprocessing stage de-
voted to typographical adjustments, tokenization, and morphosyntactic anal-
ysis. During this step, multiple-word terms and domain-specific terms and
acronyms defined in a user glossary are converted into single tokens. All words
that do not appear either in a standard English dictionary or in the user glossary
are at this stage marked as potentially erroneous, and the user is prompted to
confirm their correctness (thereby adding them to the user glossary). The pre-
processed text is then parsed, according to a small set of fuzzy parsing rules,
to produce a parse tree corresponding to the original statement. The parse tree
is finally translated into predicate logic form, and submitted to the Rev or Con
operators for consistency checking and adding to the specification. The whole
process is exemplified in Figure 5 (but see also Section 5 for more complex
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Fig. 5. An example of how NL requirements are translated into predicate logic.

examples), where the tags used in morphosyntactic annotation are derived
from those in the Penn Treebank set [Marcus et al. 1993] (e.g., /WRB stands for
adverb, /NN for noun, /VB for verb, etc.). The intermediate nodes in the parse
tree have the following meaning: a TERM node represents an entity in the domain
of discourse, or a referent to such a term; an ATOM node represents the applica-
tion of a predicate (verb) to its arguments (subject, object, and complements);
and an IMPL node represents an implication relation—be it causal, temporal, or
otherwise—between an antecedent (premise) and a consequent (consequence).

Morphosyntactic analysis on the text is performed with the help of
TreeTagger [Schmid 1994], a tagger based on probabilistic decision trees ob-
tained from annotated corpora. Given a sentence representing a requirement,
this step annotates each word with a set of tags describing its part-of-speech
role, and with the base form (lemma) of the word. Moreover, part of the infor-
mation that is normally conveyed through the various affixes (e.g., the mood of
verbs) is stripped from the base form and moved to tags, where it can be more
easily analyzed in later stages.

The parsing proper is performed by using the CICO algorithm, described
more fully in Ambriola and Gervasi [1999] and Gervasi [2000, 2001]. The algo-
rithm employs domain-based parsing, a shallow parsing technique that exploits
knowledge about the domain-specific properties of terms in order to determine
an “optimal” parse tree for a natural language sentence. It is particularly suited
to the analysis of documents that are of technical nature, since in such cases
several simplifying assumptions hold. However, the same algorithm can also
be used as a generic syntax-based parser, by taking (a controlled subset of) the
English grammar as its domain. The parser can also be described as an engine
for the application of a fuzzy rewriting system to a text, using backtracking
and heuristic optimization strategies to determine an optimal parse tree for
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a statement. Optimal in this context refers to optimality relative to a scoring
system, which encourages the synthesis of parsing trees as complete as possi-
ble. Examples of factors that are taken into account by the scoring system are
inversion in the order of words, dropped terms, depth of the parse tree, and
specificity of the various parsing rules (see Gervasi [2001] for details).

A parsing rule consists of three parts: a template M for the fragment that is
being matched, an action A that records the intended semantics of the fragment
(as a node in the parse tree), and a substitution S that replaces the matched
fragment in the text. Parsing rules are also called MAS rules, from the three
components above. Matchings can be either literal (i.e., a specific keyword is
found) or based on the tags assigned to a term.

For example, the template a/DT/0 neg/NOT/0 adj/JJ/0 n/NNmatches an op-
tional (as denoted by /0) article, followed by an optional negation, followed again
by an optional adjective, and finally followed by a mandatory noun. Thus, the
template matches fragments like the ambulance or nonmedical emergencies.
Notice also that, due to the fuzziness of the scoring system, the same rule would
also match variations like a desperately confused operator (desperately would be
ignored, and a confused operator would be matched) and an ambulance, broken
(parsed as a broken ambulance). The corresponding action for this model could
be TERM $a $neg $adj $n, meaning that we want to record occurrences of this
template as a TERM node in the parsing tree, having as children the subtrees
corresponding to all the constituents of the fragment. Finally, we could specify
a substitution of $ID/TERM, meaning that we want the whole fragment replaced
by a reference to its corresponding node in the parse tree (by using the spe-
cial variable $ID), and that we want this reference to have type /TERM for the
purpose of subsequent matchings. The full rule for this case would then be

a/DT/0 neg/NOT/0 adj/JJ/0 n/NN
TERM $a $neg $adj $n

$ID/TERM
.

While we certainly do not make any claim of completeness, the parser handles
a number of common linguistic phenomena, that is, reference, characterization
through adjectives and relative clauses, negation, syndetic and asyndetic col-
lation, etc. It also exhibits remarkable robustness against perturbation in the
source text, so that even statements that do not conform exactly to the restric-
tions placed on the language are usually parsed correctly. We call the (fuzzy)
language accepted by the parser Sent. The parsing rules used at this stage are
shown in Table I. The set of all possible parsing trees is called Tree; one of the
elements of Tree is shown in Figure 5.

Formally, the application of the parsing algorithm to a sentence is defined as
follows:

Definition 4.1 (Parse Tree). Given a sentence r, the corresponding parse
tree is given by the function P : Sent → Tree, where P is obtained by ap-
plying to r the CICO parsing algorithm as described in Gervasi [2001], with the
set of MAS rules shown in Table I.
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Table I. The MAS Parsing Rules Used in CARL

Template Action Substitution

a/TERM THAT $neg/NOT vb/VB $a AND $a $neg $vb

a/TERM THAT IS/VB $neg/NOT
adj/JJ

$a AND $a IS $neg $adj

a/TERM THAT IS/VB adj/JJ $a AND $a IS $adj

a/TERM THAT vb/VB $a AND $a $vb

a/TERM neg/NOT vbing/VB/G $a AND $a $neg $vbing/-G

a/TERM vbing/VB/G $a AND $a $vbing/-G

vb/VB/N $vb/-VB/-N/JJ

a/SENT AND b/SENT AND $a $b $ID/SENT/AND

a/SENT b/SENT/AND AND $a $b $ID/SENT/AND

a1/JJ a2/JJ CONJ $a1 $a2 $ID/JJ/CONJ

a/SENT ONLY IF b/SENT EQV $b $a $ID/SENT

a/SENT ONLY WHEN b/SENT EQV $b $a $ID/SENT

existential/EX BE/VB a/TERM EXIST $a $ID/SENT

IF a/SENT THEN/0 b/SENT IMP $a $b $ID/SENT

WHEN a/SENT b/SENT IMP $a $b $ID/SENT

a/SENT IF b/SENT IMP $b $a $ID/SENT

a/SENT WHEN b/SENT IMP $b $a $ID/SENT

aux/MD neg/NOT v/VB MOOD $aux $neg $v

aux/MD v/VB MOOD $aux $v

DO neg/NOT v/VB MOOD absolute $neg $v

DO v/VB MOOD absolute $v

a/SENT OR b/SENT OR $a $b $ID/SENT/OR

a/SENT b/SENT/OR OR $a $b $ID/SENT/OR

prep1/PREP prep2/PREP PCONJ $prep1 $prep2 $ID/PREP/CONJ

prep/IN term/TERM PREP $prep $term $ID/PREP

to/TO term/TERM PREP $to $term $ID/PREP

a/TERM BE/VB neg/NOT/0 b/JJ
compl/PREP/0

SENT $neg $b $a $compl $ID/SENT

subj/TERM neg/NOT/0 verb/VB
obj/TERM/0 compl/PREP/0

SENT $neg $verb $subj $obj
$compl

$ID/SENT

a/TERM BE/VB neg/NOT/0 b/TERM
compl/PREP/0

SENT $neg ISA $a $b $compl $ID/SENT

a/DT/0 neg/NOT/0 adj/JJ/0 n/NN TERM $a $neg $adj $n $ID/TERM

it/PP TERM $it $ID/PPREF/TERM

EITHER a/SENT OR b/SENT XOR $a $b $ID/SENT

a/SENT UNLESS b/SENT XOR $a $b $ID/SENT

a/TERM BE/VB EITHER b/JJ OR c/JJ XOR2 $b $a $c $a $ID/SENT

a/TERM BE/VB EITHER b/TERM OR
c/TERM

XOR2 $b $a $c $a $ID/SENT

a/TERM v/VB EITHER b/TERM OR
c/TERM

XOR3 $v $a $b $v $a $c $ID/SENT
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Example 4.2. Consider the sentence r from Figure 5:

When an operator receives a call, he should dispatch an ambulance.

The parse tree returned by the parsing algorithm is shown in graphical form
in the same figure, and can also be written in textual notation as

P(r) = IMPL(ATOM(TERM(an/DT, , , operator/NN),
receive/VB/Z,
TERM(a/DT, , , call/NN) ),

ATOM(TERM( , , , he/PP),
dispatch/VB,
TERM(an/DT, , , ambulance/NN) )

)

where denotes the empty matching of an optional part of the template. Notice
also that the pronoun he is considered a TERM on its own at this stage; it will be
substituted at a later stage by an appropriate reference.

Finally, the last stage of the parsing process is devoted to the translation
of parse trees into logic formulae. This translation is performed according to a
small number of patterns:

—Simple actions expressed by verbs are translated into plain predicates. Every
action has at least a subject performing the action, and may have an object
and an arbitrary number of complements. Subjects, objects, and the nominal
part of complements are treated as arguments to the predicate. Thus, the
statement

The operator shall6 dispatch an ambulance.

is translated into logic as the predicate
dispatch(operator,ambulance).

—Asserting or checking properties of terms by using adjectives results in a
predicate named after the property, and having the term as argument. Thus,

Ambulance1 is available.

is translated as
available(ambulance1).

—Common linguistic structures are mapped to the equivalent logic operators.
This includes the basic and, or, and not operators, but also implication and
equivalence. For example, the statement

If the operator receives a phone call, he should dispatch an ambulance.

is translated into logic as
receive(operator,phone call)

→ dispatch(operator,ambulance).

In the same vein, a statement like
An ambulance is either working or broken.

6Modal verbs are not directly translated into logic, but are used to assign a priority, or importance to
the speaker, to the resulting formula. Priorities are used to compare alternative maximal extensions
according to the importance of the information that is retained, as discussed on pages 285–286.
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results in its logic equivalent
working(ambulance)↔ ¬broken(ambulance).

—Subordinate clauses introduced by verbs in the present participle or by rela-
tive pronouns are expanded into their explicit form and conjuncted with the
rest of the clause. Thus, for example,

If the operator receives a phone call concerning a medical emergency . . .

is treated as if it were
If the operator receives a phone call and the phone call concerns a medical
emergency. . . .

—Adjectives serve the role of qualifiers, constraining the applicability of a logic
formula to only those instances that satisfy the qualification. All the quali-
fiers from a formula are collected, and used as premises to the formula itself.
Thus, the statement

If an operator receives a phone call concerning a medical emergency, he should
dispatch a nearby ambulance.

is translated as
medical(emergency) ∧ nearby(ambulance)

→ ( (receive(operator,phone call) ∧
concern(phone call,emergency))

→ dispatch(operator,ambulance) ).

Of course, these schemata are far from covering the whole range of linguistic
phenomena that could be encountered in real, unrefined requirements doc-
uments; however, they prove sufficient for many applications. If needed, the
language accepted by the parser can be extended by writing appropriate MAS
rules.

Formally, the translation into logic of a SENT node s is given by induction on
the structure of parse trees. We define four semantic interpretation functions:

—N : Tree → Term is a function that associates a node (of type TERM or PREP)
to a logic term that represents the real-world object denoted by the node;

—Q : Tree → Asr is a function that associates a node to a logic formula that
qualifies the generic terms that are referred in the subtree rooted at the node;

—F : Tree → Asr is a function that associates a node to a logic formula that rep-
resents the relationships that the node establishes among its constituents;

—T : Tree → Asr is the main function that defines the translation of a whole
parse tree into predicate logic.

The naming function N is applied to basic nodes representing terms or com-
plements (i.e., terms preceded by a preposition) to obtain the name of the atom
that represents the term. It is defined on nodes of type TERM and PREP as follows:

Definition 4.3 (Naming Function).

N (TERM(art, neg , ad j , noun)) = noun
N (PREP(prep, term)) = N (term)
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Although not shown in the definition, the naming function also selects the
proper reference for TERMs that represent pronouns, and returns the naming
function of the referred node instead, heuristically defined as the nearest among
the precedent potential foci that are valid in a particular logic context.

The qualification function Q collects the restrictions posed on terms by the
use of adjectives, for example, the term an emergency call refers only to those
calls that concern an emergency. These qualifications are expressed as predi-
cates and collected7 through the whole tree:

Definition 4.4 (Qualification Function).

Q(TERM(art, neg, adj, noun)) =
{

adj(noun) if neg is empty,
¬adj(noun) otherwise,

Q(PREP(prep, term)) = Q(term),
Q(PCONJ(prep1, prep2)) = Q(prep1) ∪ Q(prep2),

Q(SENT(neg, vb, subj, obj, compl)) = Q(subj) ∪ Q(obj) ∪ Q(compl),
Q(AND(s1, s2)) = Q(s1) ∪ Q(s2),
Q(OR(s1, s2)) = Q(s1) ∪ Q(s2),

Q(NOT(s)) = Q(s),
Q(XOR(s1, s2)) = Q(s1) ∪ Q(s2),

Q(XOR2(p1, t1, p2, t2)) = Q(t1) ∪ Q(t2),
Q(XOR3(vb1, t11, t12, vb2, t21, t22)) = Q(t11) ∪ Q(t12) ∪ Q(t21) ∪ Q(t22),

Q(IMP(s1, s2)) = Q(s1) ∪ Q(s2),
Q(EQV(s1, s2)) = Q(s1) ∪ Q(s2).

The logic form function F is applied to a subtree representing a sentence to
compute its equivalent logic formula:

Definition 4.5 (Logic Form Function).

F(SENT(neg, vb, subj, obj, compl )) =




vb(N (subj ), N (obj ), N (compl ))
if neg is empty,

¬vb(N (subj ), N (obj ), N (compl ))
otherwise,

F(AND(s1, s2)) = F(s1) ∧ F(s2),
F(OR(s1, s2)) = F(s1) ∨ F(s2),

F(NOT(s)) = ¬F(s),
F(XOR(s1, s2)) = F(s1) ↔ ¬F(s2),

7An internal renaming is performed if a single noun occurs multiple times in conjunction with dif-
ferent attributes, so that the various instances can be told apart in the logic form of the requirement.
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F(XOR2(p1, t1, p2, t2)) = p1(N (t1)) ↔ ¬p2(N (t2)),
F(XOR3(vb1, t11, t12, vb2, t21, t22)) = vb1(N (t11), N (t12)) ↔ ¬vb2(N (t21), N (t22)),

F(IMP(s1, s2)) = F(s1) → F(s2),
F(EQV(s1, s2)) = F(s1) ↔ F(s2).

Finally, the final translation function collects all the qualifications in a parse
tree with root r and composes them with the logic form of the whole tree:

Definition 4.6 (Logic Translation Function).

T (r) =
{
Q(r) → F(r) if Q(r) �= ∅
F(r) otherwise

Based on the properties of the parsing algorithm given in Gervasi [2001],
and on the above definitions, we state the following:

Conjecture 4.7. Given a sentence r in the fuzzy language defined by the
parsing rules of Table I, T (P(r)) is a logic formula that corresponds to the
intuitive meaning of r.

The equivalence of the translated logic form to the intended meaning of the
original NL text, of course, can only be conjectured, and not proved. However,
as we will show in Section 5, even a relatively simple translation schema as
the one presented above can provide good results on most types of common
requirements. The interested reader can refer to Appendix B for a comparison
between the translation strategy we presented here and human performance
at the same task.

The last remaining problem concerns the translation of logic formulae back
into natural language sentences, in order to provide meaningful feedback to the
user. While the task may seem hard, a careful analysis of the kind of feedback
that we intend to produce reveals that only two types of translation are needed.

First, when reporting inconsistencies and proposing alternative maximal ex-
tensions to choose from, only assertions corresponding to entire requirements
are considered. Since linkage information connecting assertions to their origi-
nal text is maintained both by the parser and by the inference engine, in this
case it is sufficient to retrieve the original statement corresponding to each
assertion.

Second, when presenting scenarios, only simple atoms are to be unparsed,
according to Definition 3.11. To this end, a simple unparsing schema based
on the rules in Table I suffices. A number of grammatical and lexicographical
features are also taken into account, in order to synthesize “natural looking”
sentences. We will not go into the linguistic details in this article; in general
terms, the translation of these classes of logic formulae into NL text is given by
the following definition:

Definition 4.8 (Unparsing). Given a logic formula l ∈ Asr, a set of NL re-
quirements R, and a specification S = (F, H, C) obtained by successive applica-
tions of the Rev(S, α) and Con(S, α) operators, where α = T (P(s)) and s ∈ R,
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the unparsed version of l is given by the function U : Asr → Sent, defined as

U(l ) =



s ∈ S s.t. T (P(s)) ≡ l if l ∈ F ∪ H ∪ C,
UNPARSE(l ) if l is an atomic predicate and l �∈ F ∪ H ∪ C,
undefined otherwise,

where UNPARSE() represents the inverse application of the MAS rules in Table I
for ATOM (together with a few aestethic adjustments of the text).

Moreover, given a set of logic formulae {l1, . . . , ln}, we define the set-oriented
version of the unparsing function as

US({l1, . . . , ln}) = U(l1) · . . . · U(ln),

where · denotes the append operation for sentences.

It should be noted that in the first case of the definition above, several dif-
ferent s can satisfy the condition stated. In this case, we consider them to be
purely syntactic variations of the same fact, all equally acceptable for feedback
purposes, and we could nondeterministically choose a natural language version
to return. While in theory the choice of which version to present is immaterial,
in practice it is preferable to present a deterministically chosen version to the
user, in order to maintain consistency of the representation and simplify the
analysis process. Moreover, the algorithm implementing the US function in our
prototype CARL also sorts sentences so that the first occurrence of a term does
not appear in the role of a subject, if possible, and so that other occurrences
appear as near as possible to the first one. This improves the perceived natu-
ralness of the resulting text (see Section 5 for examples).

We can now state our second conjecture:

Conjecture 4.9. Under the conditions given in Definition 4.8, the intuitive
meaning of U(l ) corresponds to l .

Remark 4.10. The parsing function T (P()) and the unparsing function U()
are naturally meant to be dual. In fact, for any requirement r in the fuzzy
language described by the rules in Table I, we have that

U(T (P(r))) ≡ r,

where equivalence is understood up to purely syntactical variations. Moreover,
given a set of requirements R, we have that

∀l ∈ HR(R), T (P(U(l ))) ≡ l ,

where HR(R) is the Herbrand base for the assertions resulting from R, that is:

HR(R) =
⋃
r∈R

H(T (P(r))).

These observations support our conjectures about the equivalence between the
natural language form and the logic form of the requirements that comprise a
specification.

Example 4.11. Let us consider the requirement r below:

r = When an operator receives a call, he should dispatch an ambulance.
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As shown in Figure 5 and discussed in Example 4.2, the parsing process pro-
duces the parse tree P(r), whose translation into logic is

T (P(r)) = receive(operator,call) → dispatch(operator,ambulance).

As per Conjecture 4.7, we assume this formula to be equivalent to the NL
requirement. In the course of the analysis, we may have to warn the user about
an inconsistency, and to present her with a number of possible alternative ex-
tensions to choose from. In this case, we may have to translate back the formula
into natural language. In our case, we have

U(receive(operator,call) → dispatch(operator,ambulance))
= When an operator receives a call, he should dispatch an ambulance.

since the first case of Definition 4.8 is taken. Alternatively, we may have to
present a particular scenario to the user. In this case, the possible atoms that
may appear in the scenario are

HR({r}) = {receive(operator,call), dispatch(operator,ambulance)}.
Consider, for example, the scenario s1 = HR({r}). In translating it into natural
language, the second case of Definition 4.8 is taken, producing the following
text:

US(s1) = An operator receives a call;
the operator dispatches an ambulance.

In both cases, we claim that the NL representations of the logic formulae pre-
serve their intended meaning, in keeping with Conjecture 4.9.

5. AN EXAMPLE

To show how the techniques we presented in the previous sections are used in
practice, we resort to a classic example concerning a computer-aided dispatch
system employed by the London Ambulance Service (LAS). The general goal of
the LAS is to service emergency phone calls, by efficiently dispatching ambu-
lances if the emergency requires medical attention, or by forwarding calls to
other emergency services otherwise. The LAS is also responsible for maintain-
ing its fleet of ambulances in good operating condition.

The LAS system has been used as a common case study in a number of
works, including our previous article [Zowghi et al. 2001]; an introduction and
related references can be found in Finkelstein and Dowell [1996]. In particular,
we follow here the steps of Hunter and Nuseibeh [1998], in which a subset of
the requirements for the LAS system was considered.

The example has been run on CARL, our prototypical tool implementing
(i) functions for parsing and unparsing NL sentences and translating them
into propositional logic, based on the parsing algorithm in Gervasi [2001]; (ii)
the Rev and Con operators, based on those presented in Zowghi et al. [1997];
(iii) a theorem prover based on semantic tableaux for checking consistency;
(iv) a scenario generator; (v) a simple model checker for S-consistency. CARL
also provides a graphical user interface and a repository to access and store
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requirements between sessions. The repository can also be shared among many
stakeholders, to support collaborative work.

In Hunter and Nuseibeh [1998], three stakeholders are identified: the Inci-
dent Room Controller (IRC), the Operations Manager (OM), and the Logistics
Manager (LM). The IRC is in charge of processing phone calls to the emergency
service, and in discriminating between calls that should prompt further action
from the LAS and calls that should be forwarded to other specialized emergency
services (e.g., the fire brigade or the police station). The IRC stakeholder could
then express the following requirements8:

Incident Room Controller
IRC1 A medical emergency is either an illness or an accident.
IRC2 When an operator receives a phone call concerning a medical emergency,

he should dispatch a nearby available ambulance.
IRC3 When an operator receives a phone call concerning a nonmedical emergency,

—the operator should not dispatch an ambulance, and
—he should transfer the phone call to another service.

The Operations Manager, on the other hand, is more concerned with the re-
sponse times and with the general efficiency of the service. He could concentrate
on which ambulances are dispatched, rather than on when they are dispatched.
Let us thus assume that the following requirements are expressed by the OM:

Operations Manager
OM1 When an operator receives a phone call, he should dispatch a nearby

available ambulance.
OM2 When an operator receives a phone call, if an ambulance is not nearby or

not available, then the operator should not dispatch that ambulance.

Finally, we have the Logistics Manager, who is mainly interested in managing
the vehicles and their crews. The LM is not concerned with the actual usage
of the ambulances to serve emergency calls. However, the LM must ensure
that only vehicles that are “in order” are used to carry the service on. We thus
consider the following requirements for the LM:

Logistics Manager
LM1 If an ambulance does not have a crew, it is not available.
LM2 If an ambulance was not serviced during the last year, then

—the ambulance is not available, and
—a technician must check it for maintenance.

LM3 The operator does not dispatch an amb ulance if it is not available.

All these NL requirements can be entered, one at a time, in CARL’s repository
(see Figure 6), by invoking a revision operation. In addition to an identifier and

8The examples are somewhat oversimplified in order to better illustrate the analysis techniques
that are applied to the requirements of the various stakeholders. In particular, the concept of the
location of the incident should be introduced, in order to determine where to dispatch an ambulance,
and to define the concept of “nearby” ambulance.
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Fig. 6. Entering a NL requirement in CARL.

Fig. 7. Entering a glossary term in CARL.

to the requirement itself, the user can optionally enter a priority (overriding the
default one that is derived from the mood of the main verb in the sentence) and
a category for the requirement. The set of possible categories is user-defined;
CARL does not use these labels except for display purposes.

Upon entering a requirement, the user is asked to define all unknown terms
(e.g., acronyms and words not found either in a standard English dictionary
or in the user glossary). The user can also define additional terms, for exam-
ple, in case of multiword terms like phone call, to override the meaning and
grammatical role extracted from the dictionary, or simply to document their
intended meaning for documentation purposes (see Figure 7).

Automatic translation of the requirements above, according to the parsing
and translation techniques outlined in Section 4, yields the set of logic formulae
shown in Table II. As an advanced feature, the user could ask CARL to provide
detailed feedback about the translation. The feedback provided would include
the tagged form of the NL requirement, the corresponding logic formula, and
the unparsed version of the same requirement. While tags and logic formu-
lae are not intended for the normal user, the unparsed version could also be
used as a paraphrase, to verify that CARL has indeed interpreted the sentence
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Table II. Logic Formulae for the Requirements of the LAS (The codes on the right represent
priorities: [a] = absolute (indicative mood), [o] = optative (should), [i] = imperative (must).)

Incident Room Controller
IRC1 medical(emergency) [a]

→ (illness(emergency)↔ ¬accident(emergency))
IRC2 (medical(emergency) ∧ nearby(ambulance) ∧ available(ambulance)) [o]

→ ((receive(operator,phone call)

∧ concern(phone call,emergency))

→ dispatch(operator,ambulance))

IRC3 (¬medical(emergency)) [0]

→ ((receive(operator,phone call)

∧ concern(phone call,emergency))

→ (¬dispatch(operator,ambulance)
∧ transfer(operator,phone call,service)))

Operations Manager
OM1 (nearby(ambulance) ∧ available(ambulance)) [o]

→ (receive(operator,phone call)

→ dispatch(operator,phone call))

OM2 receive(operator,phone call) [o]

→ (¬nearby(ambulance) ∨ ¬available(ambulance))
→ (¬dispatch(operator,ambulance))

Logistics Manager
LM1 ¬have(ambulance,crew) → ¬available(ambulance) [a]

LM2 (¬(nearby(ambulance) ∧ available(ambulance))) [a]

→ ¬dispatch(operator,ambulance)
LM3 last(year) [i]

→ ( ¬revise(ambulance,year)
→ (¬available(ambulance)

∧ check(technician,ambulance,maintenance)))

according to the user’s intentions. As an example, Figure 8 presents an example
of feedback, where it is shown that the NL requirement originally entered as

When an operator receives a phone call, he should dispatch a

nearby available ambulance.

has been interpreted by CARL as

If an ambulance is nearby and the ambulance is available, then if

an operator receives a phone call, the operator dispatches9 that

ambulance.

None of the requirements in Table II cause any inconsistency per se; thus
all of them are entered into the F bucket through the Rev operator. Naturally,
this is a consequence of the fact that all of the requirements are expressed in
conditional terms, and we have no facts in our model.

We can use the analysis capabilities of CARL to instantiate the specification
and simulate the behavior of the system under certain conditions. An analyst
could then use the results of the simulation to verify his understanding of the
problem, or to check with the stakeholders whether the behavior resulting from

9Notice that the priority information provided by the modal verb should is missing in the para-
phrase, but shown on the main list of requirements.
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Fig. 8. The feedback provided by CARL on how NL requirements are translated into logic form
and interpreted by the tool.

the combination of the requirements from all the stakeholder is acceptable to
each of them.

For example, let us investigate what would happen if an ambulance without
crew was considered available. To this end, we can create a new partial scenario
and enter the sentence

An ambulance is available and it does not have a crew.

When asked to verify the consistency of this partial scenario, CARL identifies
an explicit conflict (see Figure 9), and suggests possible ways of resolving
it. In this case, there are two possibilities: either we renounce to the partial
scenario, or the requirement LM1 (“If an ambulance does not have a crew, it
is not available”) has to be sacrificed. Even if we decide for the latter option,
the requirement need not be discarded: instead, it is simply demoted to a
hypothesis (see Figure 10), and will return in force as soon as the (admittedly
odd) partial scenario is recalled.

Even if we do not specify a scenario, inconsistencies could arise between dif-
ferent stakeholders’ viewpoints. Extending Hunter and Nuseibeh [1998], sup-
pose we identify two more stakeholders in the LAS system, the maintenance
technician (MT) in charge of properly maintaining ambulances in good working
conditions, and the human resources secretary (HR) who schedules the shifts
for the ambulance crews. The MT cannot operate on ambulances that have
crews on board; hence he could state the following requirement:

Maintenance Technician
MT1 Ambulances are available only when they have no crews.
MT2 When an ambulance is available, a technician should check it for

maintenance.
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Fig. 9. A case of inconsistency: CARL has identified a conflict between the current specification
and a new fact.

On the other hand, as far as HR is concerned, once a shift has been scheduled
and a crew assigned to an ambulance, it is available:

Human Resources
HR1 A crew includes a driver, a medic, and a paramedic.
HR2 When an ambulance has a crew, it is available.

If we try to revise the specification with these requirements that are trans-
lated into logic form as

Maintenance Technician
MT1 available(ambulance)↔ ¬have(ambulance,crew) [a]

MT2 available(ambulance)

→ check(technician,ambulance,maintenance) [o]

Human Resources
HR1 include(crew,driver,medic,paramedic) [a]

HR2 have(ambulance,crew) → available(ambulance) [a]

CARL reports again an inconsistency, akin to the one shown above. This time,
the conflicting requirements are LM1, MT1, and HR2, as the reader can easily
verify. It is interesting to notice that any two of those requirements can be sat-
isfied at the same time, whereas considering all three requirements together
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Fig. 10. A case of inconsistency: CARL suggests that a requirement previously considered a fact
should be demoted to a hypothesis, since a conflicting statement has been added to the specification.

causes an inconsistency. This case emphasizes the complex nature of inconsis-
tency, which is a property of set of requirements, and not a binary relation as
some earlier work (e.g., Easterbrook and Nuseibeh [1996]) has postulated.

In our case, discussion with the three stakeholders involved might reveal
that the term available has been used with different meanings: the LM intended
available for dispatching, whereas the MT intended available for maintenance.
Also, the second HR requirement as formulated is too strong, in that available
is intended as available as far as HR is concerned, a concept different from
both the LM and MT ones. In fact, an ambulance staffed with a crew might still
not be available for dispatching (e.g., because it does not have enough fuel). In
normal conditions, HR2 could be considered a reasonable default, but not a sure
fact: demoting it to a hypothesis would thus be appropriate.

CARL’s glossary feature can help in resolving inconsistencies that are caused
by terminological ambiguity, like the one above. In our glossary, available
might have been defined as ready to be dispatched to service an emergency call,
thus supporting the LM use of the term, and hinting that MT1, MT2, and HR2
should be revised. Possible corrective actions include using different adjectives
for the different meanings (e.g., available and serviceable), or adding a spec-
ifier (e.g., available for dispatching vs. available for maintenance).

As a more interesting example, let us turn back to the simple case where
only IRC, OM, and LM are involved, and let us consider what happens in the
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“normal” case for processing a phone call received by the Incident Room Con-
troller, as expressed by the following partial scenario:

There is a medical emergency;
an operator receives a phone call concerning the emergency;
an ambulance is nearby and available.

When these facts—as natural language sentences—are entered into the sys-
tem, their logic translation:

medical(emergency)
receive(operator,phone call)
concern(phone call,emergency)
nearby(ambulance)
available(ambulance)

is provisionally revised into the specification, without causing any inconsis-
tency, and thus complementing what is in the F bucket. The absence of conflicts
assures us that all the stakeholders agree on what the processing of the normal
case should be. Moreover, we can inspect through CARL what other conse-
quences can be deduced for this scenario, by checking for implied facts. Indeed,
the system identifies these other facts as true:

—dispatch(operator,ambulance) from IRC2 and also from OM1: the operator ac-
tually dispatches a nearby available ambulance;

—have(ambulance,crew) from LM1: the ambulance will be dispatched with a crew
on board.

By presenting to the user the corresponding unparsed NL sentences, CARL can
improve the confidence that a system implemented according to these require-
ments will behave as expected.

Analogously, the Logistics Manager might want to know what happens
when an ambulance has not been serviced lately. The corresponding scenario,
in logic terms, is last(year 2004)∧ ¬revised(ambulance,year 2004). This scenario
does not produce any inconsistency, and yields as consequences the following
facts:

—¬available(ambulance) from LM3;
—check(technician,ambulance,maintenance) also from LM3;
—¬dispatch(operator,ambulance) from LM2.

The LM can then rest assured that all the stakeholders agree on the fact that
in no case an ambulance that was not serviced during the last year will be
dispatched by an operator.

This approach, analogous to the one used in Hunter and Nuseibeh [1998],
is effective for confirming the analyst’s or the stakeholders’ expectations for
certain cases. However, it does not help in checking the behavior of the system
for unexpected scenarios. To this end, a more exhaustive analysis is needed: the
one provided by the search for problematic scenarios via completions, starting
with the empty partial scenario.
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Indeed, if we apply this technique to our example, CARL identifies the fol-
lowing scenario as triggering a hidden inconsistency in the LAS requirements:

¬medical(emergency)
concern(phone call,emergency)
receive(operator,phone call)
nearby(ambulance)
available(ambulance)

The complete problematic scenario is automatically unparsed to NL form, and
presented to the user as follows:
An operator receives a phone call;
the phone call concerns an emergency;
the emergency is not medical;
an ambulance is nearby;
the ambulance is available.

As can be observed, from this scenario both dispatch(operator,ambulance) and
¬dispatch(operator,ambulance) can be derived. In fact, IRC3 and OM1 are the
causes of inconsistency: OM1 tacitly assumes that a phone call will always result
in the dispatching of a nearby available ambulance, regardless of the nature of
the emergency, whereas the more complete IRC3 specifies that in the scenario
presented above no ambulance should be dispatched, and the call should be
forwarded to some other service instead. Tacit assumptions of this kind are
indeed often found in requirements documents. Two maximal extensions are
identified, and presented to the user as possible alternative ways of tolerating
this particular inconsistency:

F \ {IRC3}, and
F \ {OM1}.

In other words, to remove the inconsistency under this scenario we have to give
up either IRC3 or OM1. As usual, CARL also provides suggestions regarding
the most optimal course of action, based on the priorities assigned to each
requirement. In this case, the two candidates were both stated in the optative
mood, with no specific priority assigned at the time they were entered. Hence,
CARL suggests that any of them could be demoted, without giving preference
to either.

In this example, our understanding of the problem would probably be suf-
ficient to take a decision. But in a real case, the analyst might want to con-
sult the stakeholders owning the inconsistent requirements (i.e., the Incident
Room Controller and the Operations Manager), showing them the problematic
scenario identified by CARL and the various alternatives, to decide how the
inconsistency should be handled. Pending a final decision on the matter, one
of the conflicting requirements will be demoted and moved from F to H. As a
consequence, the demoted requirement will be treated as a default, to be con-
sidered valid unless some other requirements in F specifies otherwise. If we
decide to demote OM1, ambulances will be dispatched every time a phone call
is received by the operator, unless some other requirement (i.e., IRC3) explic-
itly prohibits it. As an important side effect, since OM1 is in H, the Operations
Manager knows that in certain cases his requirement will not be satisfied (i.e.,
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when IRC3 preempts it), and thus is encouraged not to rely on it unconditionally.
In this way, a false sense of security is avoided, as is the buildup of excessive
expectations—both of which are among the most common causes of failure in
requirements elicitation processes.

6. DISCUSSION AND COMPARISON

In this section we discuss some of the limitations of our approach alongside
with relevant mitigating factors, and compare the goal, scope, and spirit of our
work to what other researchers have proposed in recent times.

First, propositional logic can be considered not expressive enough to model
in sufficient detail and precision complex system behavior. In our experience,
propositional logic was found to be adequate to express high-level requirements,
but not the details of how the system should behave. These two types of require-
ments can be exemplified by considering the requirement that an ambulance
must have been serviced. In propositional logic, this could be expressed simply
as a high-level requirement, for example,

serviced(ambulance),

whereas a more detailed version could be expressed, in first-order logic, as a
detailed requirement, for example:

∀a ∈ Ambulances,
∀d ∈ DefectReports(a),
∃m ∈ MaintenanceLog(a) : date(m) ≥ date(d ).

It can be observed that while this second expression of the requirement is
more complex, it provides much more information, in particular linking the
concept of “maintaining an ambulance” with those of defect reports and main-
tenance log. However, in the early stages of requirements evolution, simpler
requirements of the first type tend to prevail, and are more subject to ne-
gotiation between the stakeholders. Being able to reveal inconsistencies at
this stage is thus useful even if all the details of the requirements cannot
be stated precisely. Moreover, if a reasoning system is based on first-order
logic, there is no sound and complete decision procedure for logical conse-
quences which is guaranteed to terminate. This fact manifests itself in first-
order logic theorem provers as the need for user input when trying to find an
inductive hypothesis in complex proofs. As a consequence, when using first-
order logic, it is not possible to provide totally push-button tools like CARL.
However, push-button tools are the kind of instruments that are more read-
ily accepted and deployed in industrial practice, and we believe this to be
an extremely desirable feature of our approach. One possible solution to this
problem is to restrict the language to a subset with known computational ad-
vantages such as Horn clause logic or Datalog [Abiteboul and Simon 1991;
Ullman 1989]. Another alternative is to restrict it to first-order representa-
tions over finite domains, which can be instantiated down to the propositional
level [Jackson 2000; Russo and Nuseibeh 2001]. This would allow proofs to con-
tinue to be carried out automatically, thus preserving our tenet that the user
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should not be forced to plunge into the complexity of formal reasoning with
logic.

Indeed, other researchers have explored the use of more sophisticated forms
of logic. These studies have mainly concerned the usage of logic and model
checking as tools for the specification and formal verification of properties of
software systems, rather than in support of requirements engineering. More-
over, few of the studies have investigated the important issue of how usable
these techniques are in a typical production context, that is, when experts in for-
mal languages like modal action logic [Ryan 1993], multivalued logic [Chechik
et al. 2003], QC-logic [Hunter and Nuseibeh 1998], or abductive logic [Russo
et al. 2002] are not readily available. Even some recent studies specifically
targeted at requirements engineering (e.g., Choi et al. [2002]; Eshuis et al.
[2002]) have not addressed this issue. In contrast, our work has focused on
providing lightweight and easy to use yet rigorous tools in support of the early
phases of requirements elicitation and negotiation. We highlight two advan-
tages of our approach with respect to the ones cited above: (i) our use of clas-
sical propositional logic makes the framework simple and elegant; we have
explicitly avoided the complexity of introducing additional truth values (e.g.,
Chechik et al. [2003]; Huth and Pradhan [2004]) and a special notion of para-
consistency; instead, we developed two defeasible operators that act on a conve-
niently partioned knowledge base. (ii) The use of a natural language interface
empowers even nonexpert stakeholder to profitably use our framework; all in-
put to and output from our prototype tool is in plain yet rigorous English, thus
helping the stakeholders in choosing a course of action when inconsistencies
arise.

We believe that our approach is better suited to the initial phases of develop-
ment, when the principal concerns are elicitation, clarification, and negotiation
of the requirements. We envision that more thorough analysis can be carried
on, if so desired, at a later stage, after the requirements have been agreed upon.

Another important difference with respect to other approaches is that we
consider a dynamically evolving requirements base, whereas some previous
work (e.g., Huth and Pradhan [2004]; Chechik et al. [2003]) has concentrated
on static requirements that are inconsistent per se, or on cases where merging
several static viewpoints expose latent inconsistency. Thus, we manage incon-
sistency during requirements evolution, rather than finding inconsistency in
a set of already specified requirements. The same goal of managing inconsis-
tency during evolution has been stated in related work [Garcez et al. 2003]
where event-based descriptions and neural networks have been applied.

The second limitation concerns the kind of restricted NL defined in Table I,
which is not expressive enough for many purposes. This, however, is not a major
problem in itself, since both the parsing rules and the translation functions
are modular and compositional, and allow easy expansion with more complex
grammatical constructs, as needed by specific applications or domains.

In fact, in related research [Gervasi 2000; Gervasi and Ambriola 2002], the
same parser has been used to analyze completely different languages, ranging
from analyzing functional software specification, to information extraction from
real estate ads, to identification of rethorical structures in literary text. More
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specifically, the language recognized by CARL has been extended by adding a
few domain-specific constructs in the context of an industrial case study, whose
results will be reported in a companion article.

The third limitation concerns scalability. We have not addressed the issue
of the scalability of the approach to industrial-strength cases in this article.
Since parsing and translation are done one requirement at a time, as soon
as requirements are entered into the system, the resources needed for that
step are essentially constant. Moreover, the linguistic processing of a single
requirement is fast enough (usually, well below 1 s) that it does not add sig-
nificantly to the time needed to type it; hence, from a user interface point of
view, this processing step introduces no perceivable overload. Transformation
into conjunctive normal form for insertion into the tree-based representation
of the various buckets has a complexity that grows linearly with the size of the
logic-form representation of the requirement. Since the size of the logic-form
representation is bound by the size of the natural language form, and this in
turn does not normally exceed the standard size of a sentence, this step too does
not give rise to scalability concerns.

However, theorem proving and model checking may require resources that,
in the worst case, grow exponentially with the total number of requirements
in a specification. CARL, being a research prototype rather than an industrial-
strength tool, implements rather simplistic versions of both of them, but more
efficient theorem provers and model checkers exist and could be used instead.
Current state-of-the-art algorithms for model checking on contemporary hard-
ware can handle thousands of propositional variables, or even millions if the
model can be reduced to a satisfiability problem on structured formulae. This is
a huge number of atoms for high-level requirements like the ones we are consid-
ering in this work; we thus expect that our technique, when used in conjunction
with such algorithms, can scale reasonably well to real-life problems.

Moreover, the worst-case scenario rarely materializes in practice (e.g., an
inconsistency caused by some fact derived through a derivation chain that en-
compasses all the requirements in a specification). Also, while the Rev() and
Con() operators that are used more frequently during requirements evolution
have efficient implementations, the most computationally expensive tasks (e.g.,
generating all the completions for the empty partial scenario) are only invoked
on demand. Thus, it is possible to run such operations overnight, without dis-
rupting the normal flow of interaction with the stakeholders.

Despite the mitigating factors cited above, further work is needed to over-
come all these limitations. Moreover, other issues should be addressed, like
integrating CARL with a requirements management tool to provide traceabil-
ity, revision control, and other capabilities relevant for process management
purposes. Although these features would improve the effectiveness of the tool,
we consider them totally orthogonal to the analysis of inconsistencies that has
been the primary focus of this work. Still, our framework provides valuable
support for traceability and revision control:

—Since all changes to the requirements are implemented as applications of
the Rev() and Con() operators, the state of the requirements specification at
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a certain stage can be seen as the result of a repeated application

S = Rev(Rev(Con(. . . Rev(S0, α) . . . , β), γ ), δ).

CARL maintains a record of the applications of operators and of the exten-
sions chosen when inconsistencies arise. That record could be supplemented
with rationale information to provide an accurate history of the evolution of
the requirements.

—By transforming natural language requirements into predicate logic formu-
lae, a number of significant relationships among requirements can be auto-
matically detected. For example: requirements that contain the same atom;
requirements that entail other requirements; requirements that take part
in the same inconsistency proof; requirements that describe actions taken
under a given scenario, etc.

The automatic generation and management of these relationships would
relieve analysts from the tedious and error-prone job of explicitly stating all
the dependencies, as required by current commercial tools, instead allowing
them to concentrate on the more important ones: those that cannot be derived
syntactically because they have a purely semantic nature.

We intend to further investigate these issues as part of our future work.

7. CONCLUSIONS

This article has addressed an important and challenging issue in RE, one that
concerns identifying and analyzing logical inconsistencies in natural language
requirements. Inconsistencies of this kind have been found to be one of the
greatest risk factors for the success of a software project. We have shown how
requirements that are expressed in natural language can be effectively parsed
and translated into logic. We have also demonstrated how these translated logi-
cal statements of requirements can be analyzed for inconsistency. Our approach
to modeling and analyzing requirements is novel because it combines the ex-
pressiveness of natural language with preciseness, rigor, and formality of logic
for handling inconsistencies in requirements specifications. We have also devel-
oped a number of tools and techniques in support of this approach: parsing and
unparsing of NL sentences, translation of these sentences into logic and back
to NL, operators for rational revision and contraction of specifications, theorem
proving, and model checking to discover explicit or hidden inconsistencies in
specifications and scenarios.

In fact, we have addressed two of the three problems whose solution has been
deemed “essential” by Easterbrook and Chechik [2002]:

Temporal logics can be hard to work with, and most people have diffi-
culty in finding the correct logical expression for all but the simplest
properties.10

10This position is indeed consistent with findings from our field study reported in Appendix B.
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and

The counter-examples produced by most model-checking engines do
not mean anything to the stakeholders, and need to be translated
back into the original modelling language.

(The third problem cited, that of state explosion in model-checking approaches,
is not specific to requirements engineering, and is the main focus of research in
the model-checking community.) Not only we have provided our stakeholders
with a more natural interface, based on natural language rather than on logic,
but we have also integrated model-checking techniques with theorem proving
in the context of a default logic, thus faithfully modeling the complex inter-
play of evolution, negotiation, verification, and validation in early requirements
analysis.

We believe that this work has achieved significant steps toward providing
automated support for identifying, analyzing, and handling inconsistencies in
NL requirements. In developing the work reported here, diverse threads from
different research disciplines were brought together. The novel application of
these theories and models to analyzing NL requirements has opened up a new
and fruitful area of research, for which this work is a starting point.

It is our hope that, as a result of our research, practitioners will have a better
access to sophisticated tools and techniques for the management of inconsis-
tencies in evolving requirements.

APPENDIX

A. BELIEF REVISION

A.1 Overview

The area of belief revision or belief change offers a theoretical foundation for
rational changes of belief, focusing on revisions that occur when one receives
new information that is possibly inconsistent with the present state of belief.
The most well-known philosophical study of belief change in modern times is
commonly referred to as the AGM theory of epistemic change. The AGM theory
of belief revision is named after its originators, Alchourron, Gärdenfors, and
Makinson, who developed the idea and published it jointly in 1985 [Alchourrón
et al. 1985]. This framework was elaborated in Gärdenfors [1988] and since
then it has become one of the standard frameworks for modeling belief and
information change.

We do not intend to provide all the technical and philosophical details of the
AGM paradigm here; for a comprehensive study of belief revision and AGM,
the reader is referred to Gärdenfors [1988]. AGM theory adopts a simple way
of modeling the epistemic state of a reasoner by a set of logical sentences closed
under deduction, the intended meaning being that it contains precisely those
sentences that she believes to be true. In order to incorporate new information
which is inconsistent with the existing knowledge base, the reasoner must de-
cide what information she is prepared to give up. Belief revision attempts to
model rational decision making that concerns changes to a knowledge base.
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Not every set of sentences is supposed to represent rational epistemic states.
The AGM framework represents the body of information that may be rationally
held by an individual as belief sets. The following rationality criteria determine
what may be regarded as an idealized rational belief change process:

(1) All the logical consequences of beliefs in an epistemic state should be in-
cluded in the epistemic state.

(2) Epistemic states should stay consistent if possible.
(3) When epistemic states are being revised, loss of information should be

minimized.
(4) More important beliefs should be retained in favor of those that are less

important.

The basic idea used in the formulation of the AGM framework is that when
we, for some reason, change our beliefs, we would like to retain as much as
possible of our old beliefs in the new belief state. This is known as the principle
of minimal change [Gärdenfors 1988]. Beliefs are generally considered to be
valuable (useful in arguments, expensive to acquire or infer), so unnecessary
loss of beliefs is irrational. When we receive new information which is consistent
with our current belief state, this requirement does not cause any problems,
since we can then preserve all the old beliefs and add the new one. If we are
rational, we must also accept all the logical consequences of the new belief. On
the contrary, if the new information is inconsistent with the current state of
belief, then some of the old beliefs must be retracted in order to preserve the
consistency of the belief state.

In the AGM framework, information states are regarded as theories, and
changes to the information content of an information state are taken as trans-
formations on theories. The AGM framework provides three types of operations
on belief states or transformations on theories. For each belief state K and
proposition α, we may have one of the following three belief change operations:

—Expansion. Expanding K by α, written as K +
α , means to add α to K without

retraction of any existing beliefs and close under logical entailment. This
may produce an inconsistent belief state. More formally, the expansion of a
theory K with respect to a sentence α is defined as: K +

α = Cn(K ∪{α}), where
Cn(K ) = {α | K |= α}.

Formally, it is assumed that + : Belief × Ass → Belief is any function that,
for any K and H belief sets, and for any assertion α, obeys the following
postulates:
(+1) K +

α is a belief set;
(+2) α ∈ K +

α (the expanded set always includes α);

(+3) K ⊆ K +
α (nothing is lost with expansion);

(+4) α ∈ K =⇒ K +
α = K (if α was already in K , expansion does nothing);

(+5) K ⊆ H =⇒ H+
α ⊆ K +

α (monotonicity of expansion with respect to ⊆).

It can be shown that the only function satisfying those properties is in fact
the logical closure under entailment of K ∪ {α}.
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—Revision. Revising K with respect to α, written as K ∗
α , means adding α to

K with the possible removal of existing beliefs such that the result is a
consistent belief state. Formally, a revision function is any function which
satisfies the AGM revision postulates below:

(∗1) K ∗
α is a belief set;

(∗2) α ∈ K ∗
α (the revised set always contains α);

(∗3) K ∗
α ⊆ K +

α (nothing is added that would not be added
by expansion);

(∗4) ¬α �∈ K =⇒ K +
α ⊆ K ∗

α (if α does not cause a contradiction, revision
is no weaker than expansion);

(∗5) K ∗
α = ⊥↔ |= ¬α (K ∗

α becomes inconsistent only when trying
to revise by a tautological falsity);

(∗6) |= α ↔ β =⇒ K ∗
α = K ∗

β (revision does not depend on term syn-
tax; logically equivalent terms produce the
same revised set distributive property with
respect to ∧);

(∗7) K ∗
α∧β ⊆ (K ∗

α)+β
(∗8) ¬β �∈ K ∗

α =⇒ (K ∗
α)+β ⊆ K ∗

α∧β (if no contradiction arises, the distributive
property holds by equality).

Postulates (∗1)–(∗8) do not uniquely characterize a specific function, thus
leaving room for different revision policies to be applied.

—Contraction. A contraction of K with respect to α, written as K −
α , involves

the removal of a set of sentences from K such that α is no longer implied.
Formally, a contraction function is any function which satisfies the AGM
contraction postulates listed below:

(−1) K −
α is a belief set;

(−2) K −
α ⊆ K (contraction does not add any belief to K );

(−3) α �∈ K =⇒ K −
α = K (if α was not in K , contracting it has no effect;

(−4) �|= α =⇒ α �∈ K −
α unless α is tautologically true, the contracted

set will not contain α).
(−5) α ∈ K =⇒ K ⊆ (K −

α )+α (if α is in K , we do not lose information if we
first contract and then expand K by it);

(−6) |= α ↔ β =⇒ K −
α = K −

β (contraction does not depend on term syntax;
logically equivalent terms produce the same
revised set distributive property with respect
to ∧);

(−7) K −
α ∩ K −

β ⊆ K −
α∧β

(−8) α �∈ K −
α∧β =⇒ K −

α∧β ⊆ K −
α (if α is not in K after contracting by α ∧ β, the

distributive property holds by equality).

Rationality postulates basically specify constraints that the respective oper-
ators should satisfy. In essence, these postulates are motivated by the rational-
ity criteria outlined above. They require that the outcome of a belief change
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operation be a logically closed consistent theory, that the change operation
be successful (i.e., in the case of expansion and revision, the new information
should be consequences of the resulting theory and in contraction should not)
that the outcome be independent of the syntactic form of the input, and that
the operation involve minimal change.

One of the major result of the AGM framework is that the postulates for
contraction are complementary to the revision postulates if the revision K ∗

α is
defined by using the Levi Identity [Levi 1977]: K ∗

α = (K −
¬α)+α , which means

that revision by α is equivalent to contracting by ¬α in order to remove any
inconsistent beliefs and then expanding the result with α. Moreover, contraction
can be defined in terms of revision using the Harper Identity [Harper 1977]:
K −

α = K ∩ K ∗
¬α.

A.2 Epistemic Entrenchment

There is a special class of ordering (i.e., a transitive and reflexive relation) called
Epistemic Entrenchment (EE) that is defined over the entire logical language.
An EE ordering, which will differ from belief state to belief state, models the
relative epistemic importance of the sentences in the belief set. The notion of
EE is essentially motivated by the fourth rationality criterion described above.
Gärdenfors [1988] stated that the epistemic entrenchment of a sentence in a
belief state is determined by how useful it is in deliberation and inquiry. Some
pieces of knowledge and belief about the world are of more importance than
others when one is making decisions or is reasoning and planning. The EE
of a sentence in a belief set is therefore related to its explanatory power and
its overall informational value rather than to its probability. Furthermore, the
context for which beliefs are ordered is very important because the same set of
beliefs may have different EE ordering when used in different contexts.

The effect of this ordering of sentences over belief revision is the requirement
that a revision/contraction operation should preserve more entrenched beliefs
in preference to less entrenched ones. If x and y are sentences of a belief set
K , x ≤ y means that y is at least as entrenched as x. The strict part of this
order is represented as x < y to mean that y is more entrenched than x. What
this means informally is that, for any two formulas x and y such that x < y ,
whenever we have a choice between giving up x or giving up y (in order to
preserve consistency), the former is chosen in order to minimize the epistemic
loss. This procedure conveys all the required information to uniquely determine
the result of a rational revision.

The major result of the epistemic entrenchment theory is that EE is fun-
damentally equivalent to the previously postulated notion of belief revision of
theories. That is, rational contraction functions may be constructed from order-
ings of epistemic entrenchment, and the EE ordering may be constructed from
rational contraction functions. One other result that is also important is that,
when revising or contracting a theory K with respect to a conjunction x ∧ y ,
one must give up the conjunct that is less epistemically entrenched, or if both
have the same EE, then both should be given up.
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A.3 Belief Bases

While the AGM framework provides a useful abstraction for the belief change
process, it does not lend itself to implementation in a straightforward way. It
has been argued [Makinson 1985] that, when belief sets are revised or con-
tracted, what is being applied is applied not to the belief set but rather to
a finite, manageable, and reasonably close to irredundant base of the belief
set. Several studies (e.g., Nebel [1991]) have therefore focused on belief bases,
which are finite sets of sentences, instead of infinite deductively closed theories,
as representations of belief states. The belief base approach considers priority
relations (known as epistemic relevance) on the belief base, instead of entrench-
ment relations defined on the entire language, in determining the outcome
of a belief change step. Formally, this notion can be modeled by representing
an arbitrary set B of sentences in the language L that we call a belief base.
Hence B is a base for a belief set K iff Cn(B) = K . In place of revision and
contraction functions that are abstractly defined on belief sets, these functions
are defined for belief bases assuming that belief sets are related to these be-
lief bases [Gärdenfors and Rott 1995]. These new functions are appropriately
called base revision and base contraction. An immediate result of employing
belief bases is that one may end up having two (or more) different bases B1 and
B2 such that Cn(B1) = Cn(B2) but where revisions or contractions performed
on these bases may result in different new states. What this means is that, by
using belief bases instead of deductively closed belief sets, the belief changes
will become syntax-dependent. It has been shown that inclusion of an explicit
representation of disbelief in the epistemic state can solve this problem [Ghose
1995]. Another limitation of the belief base approach is the fact that operations
performed on belief bases are not reversible. That is, beliefs that are discarded
from the base are irretrievably lost and cannot be considered in future revision
steps.

Representation schemes that are computationally viable are of special inter-
est in RE. Moreover, requirements for a computer-based system are typically a
finite collection of facts from a finite application domain. Therefore, in this arti-
cle, requirements specifications are represented as belief bases and hence only
the AGM-rational operators (i.e., operators which satisfy the relevant AGM
postulates) for belief bases are considered.

B. FIELD TESTS OF CONJECTURES 4.7 AND 4.9

Conjectures 4.7 and 4.9, concerning the fidelity of the translation procedure
between controlled natural language and predicate logic, cannot be ultimately
proved, since a proof would require direct access to a person’s internal state of
conscience. In other words, we would like to verify the correspondence between
a stakeholder’s intentions, the natural language expression of those intentions,
and the predicate logic encoding of the same for the purpose of formal reasoning.
Given the inaccessibility of intentions, no direct proof can be carried out.

However, it is possible to organize blind tests to measure some attributes
of the translation procedure. In particular, we have conducted experiments on
two related attributes, with the goal of ascertaining
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(1) how close the automatic translation is to what people knowledgeable in
predicate logic would do manually if asked to perform the same task, and

(2) whether inferences performed through formal reasoning on the results of
the translation are close to what experienced people would infer from the
corresponding natural language sentences.

We emphasize again that the results of these experiments should not be taken
as providing a definitive proof to our conjectures, as none can be provided. While
our results lend further credibility to the conjectures, they firmly remain such.

B.1 Experimental Setup

A sample of 15 people was randomly selected from a population of academics
and professional software developers, all of whom had a scientific background
(having at least 1 year of professional experience after having obtained either a
Master of Science or a Doctorate in Computer Science). The subjects were asked
to answer the questionnaire shown below in Section B.4, which was adminis-
tered in electronic form via e-mail. No time limit was placed on the subjects,
and they checked the questionnaire at their most convenient time. Most of
them reported that they had spent from 5 to 30 minutes on it. No information
on the purpose of the test was provided, nor were they aware of the contents
and background of the present study. No reward or other motivating factor was
promised, nor provided, to respondents.

Responses were collected by email, and compared with those produced by
CARL. In the first test (pairing test), propositional logic formulae 7 and 8 were
equivalent. This was intentional, as we wanted to test if there was any pref-
erence among the respondents in associating them with the supposedly corre-
spondent natural language sentences D and B, respectively.

B.2 Analysis of Results

The questionnaire included two sets of questions, one for each of the tasks we
outlined above. The first set (Pairing test) was intended to verify whether the
translation from natural language to logic performed by CARL according to
Definitions 4.1–4.6 was consistent with the human respondents’ expectations.
The second test (Inference test) was intended to verify whether inferences per-
formed by CARL using the logic translation and the usual inference rules of
propositional logic were consistent with how the human respondents performed
inference on the corresponding natural language sentences.

There was a certain variability in the answers we collected, due in part to
differing interpretations placed on NL sentences and in part to plain errors
on the part of the respondents (e.g., not recognizing that formulae 7 and 8
in the Pairing test have the same model, and are thus equivalent for semantic
purposes). As a reference, we considered the mode of answers to each question—
in other words, we assumed the most popular choice among respondents to be
representative of what qualified humans in general would judge a “correct”
translation into logic.
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Table III. Summary of Results from the Field Test on Conjectures 4.7 and 4.9

Pairing test
Question A B C D E F G H I J
CARL response 5 7,8 12 7,8 3 9 — 20 13 14
Mode of respondents 5 8 12 7,8 10 9 — 20 18 14
Agreement with CARL 56% 100% 78% 100% 14% 100% 86% 44% 29% 100%

Agreement between respondents and CARL: 80% (mode), 72% (single)

Inference test
Question 1 2 3 4 5 6 7 8
CARL response Y Y N Y N N N Y
Mode of respondents Y Y N Y N N N Y
Agreement with CARL 100% 57% 100% 100% 100% 71% 100% 57%

Agreement between respondents and CARL: 100% (mode), 83% (single)

A summary of the results can be observed in Table III. As the table shows,
in 8 out of 10 questions in the Pairing test CARL did as well as the majority of
the respondents. Given that no better definition of what constitutes a correct
translation can be given, this is a satisfactory result. The two exceptions are
sentences E and I. In sentence E, the probable cause of the disagreement is the
strategy used to translate selection of instances by adjectives. CARL collects
all adjectives (Definition 4.4) and uses them as a premise for the whole clause
(Definition 4.6). Thus, sentence E (“When an operator receives a phone call, he
should dispatch a nearby available ambulance”) is translated as “if there is an
ambulance nearby, and the ambulance is available, then if an operator receives
a phone call, he should dispatch that ambulance” (answer 3). On the contrary,
the majority of the respondents favored answer 10, which could be read as
“if an operator receives a phone call, then there is an ambulance nearby, it is
available, and the operator should dispatch it.” We believe that in this case the
majority of the respondents were wrong, and that CARL’s translation was more
accurate.

The other exception, sentence I, can be attributed to a different meaning
attached to the clause “only if.” In fact, CARL interprets “p only if q” as equiv-
alence, thus producing p ↔ q, while 57% of the respondents interpreted it as
implication, thus indicating q → p as the correct translation (a formula that
CARL produces for “p if q,” “if q then p,” etc.). We hypothesize that this result
comes from the tendency most human beings have to reason deductively and
only consider the positive case (hence a preference for →), while devoting less at-
tention to abductive reasoning and negative cases (hence ignoring the ← side).

In the Inference test, there was total agreement between CARL and the mode
of the respondents. In other words, in all cases CARL’s judgement coincided with
that of the majority of the respondents.

It should be noted that the degree of consensus among respondents in the
first test was much lower that in the second one. We regard this as evidence
that even experts have difficulties in doing this kind of translation manually,
as there were many errors (in the sense of different minority opinions) among
the responses for the Pairing test. Despite that, reasoning on the inference test
was almost invariably correct. We interpret this phenomenon as a proof that
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even if people indicated a “wrong” translation into logic for a given sentence,
when reasoning about it they drew the same conclusions that could be drawn
from a different (what we regard as “correct”) translation.

Summarizing the results, we observed that CARL agreed with the majority
of respondents in 80% of the cases for the Pairing test, and in 100% of the cases
for the Inference test. If we do not consider majority, but compare each response
on its own, we have that CARL’s answer was considered the correct one in 72%
of the cases in the Pairing test, and in 83% of the cases in the Inference test.
It is worthwhile to stress that CARL’s answers were the most agreed upon in
all our data set—that is, no human respondent in our group was able to obtain
a larger agreement on his choices than CARL. These results confirm our belief
that Conjectures 4.7 and 4.9 do actually hold.

B.3 Threats to Validity

In the Pairing test, we provided a fixed set of possible translations to the
respondents, whereas the real translation task was about writing a corre-
sponding formula from scratch. Hence, we have not really tested the ability
to translate a NL sentence into a propositional logic formula, but rather the
ability to decide whether a proposed translation was correct or not. In this
sense, what we tested was the decision problem associated with our original
task. However, several almost correct translations of each sentence were pro-
vided, and respondents knew that some sentences could have no corresponding
translation (e.g., sentence G). In these conditions, the decision problem was
very similar to considering several plausible alternative translations in the
direct translation task. We thus consider the results of our test applicable to
Conjecture 4.7.

In the Inference test, we could have tested with entire sets of consequences,
or with longer chains of inferences. Indeed, the consistency proofs that CARL
produces internally are usually rather large. Instead, we chose to present the
respondents with simple inferences, with only one or two derivation steps. This
does not invalidate the test, since we wanted to investigate the basic mech-
anisms of inference on natural language sentences, with an hypothesis that
rigorous reasoning on more complex inferences is obtained by composing short
derivations. Notice that in general other psychological mechanisms could in-
tervene in cases where complex inferences were needed: for example: intuition
(unrationalized qualitative reasoning). However, for the purpose of carrying out
rigorous consistency proofs, we wanted to restrict ourselves to rational reason-
ing, and this is what was tested in our experiment.

Finally, we have no guarantee that our sample is representative of the gen-
eral population of professional requirements engineers. In fact, including mem-
bers from academia, it had probably a bias toward a more formally oriented pop-
ulation than that normally found in industry. However, this does not change the
general conclusion: instead, it makes our point even stronger, in that members
of a less formally oriented population would have more difficulty in accomplish-
ing the translation and reasoning task, thus making CARL even more useful
in such a context.
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In conclusion, even if the small size of our sample does not allow us to draw
an authoritative statistical conclusion about our conjectures, all the evidence
we collected is in support of them.

B.4 Questionnaire Provided

Below we include verbatim the questionnaire that was provided to the
respondents.

Pairing test. Some of the following sentences (A–J) are equivalent to one or more
of the propositional logic formulae below (1–20); other sentences may not have a corre-
sponding logic formula. Please write down the pairs that you believe to be correspondent
(e.g., A-3, B-6, B-8, C-none, . . . ).

Natural language sentences

A. A medical emergency is either an illness or an accident.
B. If an ambulance does not have a crew, then it is not available.
C. The operator receives a phone call concerning an emergency.
D. If an ambulance is available, then it has a crew.
E. When an operator receives a phone call, he should dispatch a nearby available

ambulance.
F. The operator does not dispatch an ambulance if the ambulance is not nearby and

available.
G. If the phone call concerns an emergency, the operator should dispatch a nearby

ambulance.
H. If the phone call concerns a medical emergency, the operator should dispatch an

ambulance.
I. An ambulance is available only if it is nearby.
J. If the operator dispatches an ambulance, then it has a crew.

Propositional logic formulae

(1) emergency(medical) → illness(medical) ∨ accident(medical)

(2) dispatch(operator,ambulance) ↔ have(ambulance,crew)

(3) (nearby(ambulance) ∧ available(ambulance)) → (receive(operator,phone call) →
dispatch(operator,ambulance))

(4) medical(emergency) → (receive(operator,phone call) → dispatch(operator,ambu-
lance))

(5) medical(emergency) → (illness(emergency) ↔ ¬accident(emergency))

(6) concern(phone call,emergency) → receive(operator,phone call)

(7) available(ambulance) → have(ambulance,crew)

(8) ¬have(ambulance,crew) → ¬available(ambulance)

(9) ¬(nearby(ambulance) ∧ available(ambulance)) → ¬dispatch(operator,ambulance)

(10) receive(operator,phone call) → (nearby(ambulance) ∧ available(ambulance) ∧
dispatch(operator,ambulance))

(11) ¬nearby(ambulance) ∧ available(ambulance) → dispatch(operator,ambulance)

(12) receive(operator,phone call) ∧ concern(phone call,emergency)
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(13) available(ambulance) ↔ nearby(ambulance)

(14) dispatch(operator,ambulance) → have(ambulance,crew)

(15) receive(operator,phone call) → concern(phone call,emergency)

(16) receive phone call(operator) ∧ concern phone call(emergency)

(17) ¬nearby(ambulance) →(¬available(ambulance) →¬dispatch(operator,ambulance))

(18) nearby(ambulance) → available(ambulance)

(19) have(crew,ambulance) ∧ nearby(ambulance) → dispatch(operator,ambulance)

(20) medical(emergency) → (concern(phone call,emergency) → dispatch(operator,am-
bulance))

Inference test. Judge whether the following inferences on natural language
sentences are tenable or not (e.g., 1-Yes, 2-No, . . . ).

(1) (a) When an operator receives a phone call concerning a medical emergency, he
should dispatch a nearby available ambulance. (b) The operator receives a phone
call concerning an emergency. (c) The emergency is a medical emergency. Thus, (d)
The operator should dispatch a nearby available ambulance.

(2) (a) A medical emergency is either an illness or an accident. (b) A given medical
emergency is about an illness. Thus, (c) the medical emergency is not about an
accident.

(3) (a) When an operator receives a phone call concerning a non-medical emergency, he
should not dispatch an ambulance. (b) The operator receives a phone call concerning
an attempted manslaughter. Thus, (c) the operator should dispatch an ambulance.

(4) (a) When an operator receives a phone call, he should dispatch a nearby avail-
able ambulance. (b) The operator receives a phone call concerning an attempted
manslaughter. (c) An ambulance is nearby. (d) The ambulance is available. Thus,
(e) the operator should dispatch the ambulance.

(5) (a) If an ambulance was not serviced in 2002, then it is not available. (b) An ambu-
lance was serviced in 2002. Thus, (c) it is available.

(6) (a) An ambulance is available if it has a crew and it was serviced in 2002. (b) When an
operator receives a phone call concerning a medical emergency, he should dispatch an
available ambulance. (c) An ambulance has a crew. (d) The ambulance was serviced
in 2002. Thus, (e) the operator should dispatch the ambulance.

(7) (a) If an ambulance is not available, a technician must check it for maintainance.
(b) An ambulance is available. Thus, (c) the technician must not check it for
maintanance.

(8) (a) An ambulance is available if it has a crew. (b) When an operator receives a phone
call concerning a medical emergency, he should dispatch an available ambulance.
(c) The operator receives a phone call concerning an emergency. (d) The emergency
is a medical emergency. (e) An ambulance has a crew. Thus, (f) The operator should
dispatch that ambulance.
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