
ARTICLE IN PRESS

Theoretical Computer Science () –

www.elsevier.com/locate/tcs

A high-level modular definition of
the semantics of C�

Egon Börgera, Nicu G. Frujab, Vincenzo Gervasia, Robert F. Stärkb,∗
aDipartimento di Informatica, Università di Pisa, Via F. Buonarroti 2, I-56127 Pisa, Italy

bComputer Science Department, ETH Zürich, CH-8092 Zürich, Switzerland

Abstract

We propose a structured mathematical definition of the semantics of C� programs to provide a
platform-independent interpreter view of the language for the C� programmer, which can also be
used for a precise analysis of the ECMA standard of the language and as a reference model for
teaching. The definition takes care to reflect directly and faithfully—as much as possible without
becoming inconsistent or incomplete—the descriptions in the C� standard to become comparable
with the corresponding models for Java in Stärk et al. (Java and Java Virtual Machine—Definition,
Verification, Validation, Springer, Berlin, 2001) and to provide for implementors the possibility to
check their basic design decisions against an accurate high-level model. The model sheds light on
some of the dark corners of C� and on some critical differences between the ECMA standard and the
implementations of the language.
Crown Copyright © 2004 Published by Elsevier B.V. All rights reserved.

Keywords:Semantics of programming languages; Abstract State Machines; C�; Java; NET

1. Introduction

In thispaper themethoddeveloped in[36] for a rigorousdefinitionandanalysisof Javaand
its implementation on the JavaVirtual Machine (JVM) is applied to formalize the semantics
of the entire language C�. We provide a succinct, purely mathematical (thus platform-
independent) model, which reflects as much as possible the intuitions and design decisions

∗ Corresponding author.
E-mail addresses:boerger@di.unipi.it(E. Börger),fruja@inf.ethz.ch(N.G. Fruja),gervasi@di.unipi.it

(V. Gervasi),staerk@inf.ethz.ch(R.F. Stärk).

0304-3975/$ - see front matter Crown Copyright © 2004 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.11.008

http://www.elsevier.com/locate/tcs
mailto:boerger@di.unipi.it
mailto:fruja@inf.ethz.ch
mailto:gervasi@di.unipi.it
mailto:staerk@inf.ethz.ch

2 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

underlying the language as described in the ECMA standard[27] and in[25] and can be
used as accurate and complete referencemodel by C� programmers, by implementors of the
language and by students learning it. In Section8we point to some challenging applications
of the model for proving interesting theorems about C� and its implementations.
Themodel clarifiesa certain number of semantically relevant issueswhicharenot handled

by the ECMA standard, wherefore we also consulted the Microsoft Press books[3,30,31]
and the documentation in[18,29,34,37,39].A series of bugs and gaps in the ECMAstandard
for C� and in its implementation in .NET and incoherences between the two were detected
during our attempt to build for the language a consistent and complete yet abstractground
model(in the sense described in[8]). Some of them are mentioned in this paper to shed
light on some dark corners of C�, for a complete discussion we refer the reader to the
companion paper[20]. As a rule we adhere to an established scientific tradition for which
one of the goals of defining the meaning of programs is to accurately specify the freedom
the compiler writer has for the implementation. Nevertheless, we also want our model to
support the practice of programming. Therefore, whenever we see for a language construct
an incoherence or a to-be-closed gap between on the one side the view offered by the ECMA
standard, which should support the understanding also by programmers, and on the other
side the view current compilers seem to have, we give in our model a pragmatic preference
to abstractly defining what the programmer is allowed to expect from the execution of his
code in the current implementations of C� [29,34,39]. In each case we explicitly discuss
the discovered discrepancy so that the parameters of the design decision become clear. To
support the experimentation with the model a project has been started to refine the model
developed here to .NET-executable AsmL code[19], similarly to theAsmGofer refinement
developed by Schmid[32,33] for the Java and JVM models in[36].
To provide the programmer with a transparent view of the intricate interaction of various

language features which depend on the run-time environment, our model comes as an
abstract interpreter, which provides a simple way to reflect those run-time-related features
encountered uponexecuting a givenC�program.Toexploit the flexibility the useofAbstract
State Machines (ASMs) offers in high-level systemmodeling and to obtain the faithfulness
and simplicity of abstract models the ASM method allows one to achieve, the interpreter
takes the formof anASM.1 This allows us in particular to specify the static and the dynamic
parts of the semantics separately, due to theASMclassification of abstract states into a static
and a dynamic part. Thedynamic semanticsof the language is captured operationally by
ASM rules which describe the run-time effect of program execution on the abstract state of
the program, thestatic semanticscomes as a mainly declarative description of the relevant
syntactical and compile-time checked language features (like typing rules, rules for definite
assignment and reachability, name resolution, method resolution for overloaded methods,
etc.) and of pre-processing directives (like#define , #undef , #if , #else , #endif ,
etc.), which are mostly reflected in the attributed abstract syntax tree our model starts from.
To keep the size of the models small and to facilitate the understanding of clusters of

language constructs in terms of local state transformations, similarly to the decomposition

1 See Section8 for more information on our choice of ASMs among the many frameworks in the literature to
deal with language semantics.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 3

of Javaand the JVM in[36]we structure theC�programming language intolayered modules
of orthogonal language features, namely
• the imperative core, related to sequential control bywhile programs, built fromstatements
and expressions over the simple types of C�,

• classes, realizing procedural abstraction with global (module) variables and class initial-
ization,

• object-orientation with class instances, instance methods, inheritance,
• exception handling,
• delegates together with events (including here for convenience also properties, indexers,
attributes),

• concurrency (threads),
• so-called unsafe code with pointers and pointer arithmetic.
This yields a sequence of sublanguages C�I , C�C , C�O, C�E , C�D, C�T , C�U which
altogether describe the entire language C�. Each languageL in the sequence extends its
predecessor and for each onewe build a submachine EXECCSHARPL which is a conservative
(purely incremental) extension of its predecessor. The model EXECCSHARP for the entire
language C� is a composition of all submachines.

EXECCSHARP≡
EXECCSHARPI
EXECCSHARPC
EXECCSHARPO
EXECCSHARPE
EXECCSHARPT
EXECCSHARPD
EXECCSHARPU

This approach supports a systematic piecemeal introduction of the numerous language
constructs in teaching C� (or similar programming languages).
To keep the definition of the models succinct, we avoid tedious and routine repetitions

concerning language constructs which can be reduced in well-known ways to the core
constructs in our models. Whenever instead of a direct formalization of a construct we
use a syntactical translation to constructs dealt with in the core model, we have to justify
that the translation is correct with respect to the semantics of the construct as intended
by the standard. The ASM model we define provides a basis to rigorously formulate and
mathematically prove the intended equivalence.2 Since such a justification follows well-
known patterns, it is skipped in this paper, but to remind the reader of the problem we
usually mention it.
The handling of truly concurrent threads, not limited to interleaving or similar simple

scheduling techniques, is closely related to the underlying memory model. Since the de-
scription of this memory model goes much beyond this paper, the submodel C�T and its
further analysis is postponed to a separate paper[35].

2 One has to define an extension of the core model by a direct formalization of the construct in question and
then to prove that this model is equivalent to the core model modulo the syntactical translation of the construct.

4 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Byand largeone can correctly understandanASMaspseudo-codeoperating over abstract
data (structures in the sense of logic). Therefore we skip a detailed definition of ASMs,
which is available in textbook form in Chapter 2 of the AsmBook[16]. Since our paper
is not a tutorial or manual on C�, we restrict our explanations of language constructs to
features a reader will appreciate who is already knowledgeable about the basic concepts of
object-oriented programming. In a technical report[12] also the remaining details which
are skipped in this paper are spelt out completely, together with further explanations and
examples.
The paper is structured by the modularization we propose for the language description.

The basic framework of our model is introduced in Section2 together with the interpreter
for the imperative kernel C�I of the language. Successively one more section is added for
each model refinement to capture the related language extension. In general, each section
has a first part where the static assumptions of the model are formulated, followed by a
second part which contains the dynamics expressed by the ASM transition rules operating
on the corresponding state components. In general, at each layer the interpreter consists of
two submachines, one defining expression evaluation and one defining statement execution.

2. The imperative core C�I

In this section we define the model for C�I , which defines the basic machinery of the
ASM model for C�. It describes the semantics of the sequential imperative core of C� with
to be executed statements (appearing in method bodies) and to be evaluated expressions
(appearing in statements) built using predefined operators over simple types. The compu-
tations of this interpreter are supposed to start with an arbitrary but fixed C� program. We
separate syntax and compile-time matters from run-time issues by assuming that the pro-
gram is given as an attributed syntax tree (i.e. annotated abstract syntax tree resulting from
parsing and elaboration), trying to achieve model simplicity also by assuming some useful
syntactical simplifications which will be mentioned as we build the model. Before defining
the transition rules for the dynamic semantics of C�I , we formulate what has to be said
about the static semantics.

2.1. Static semantics ofC�I

We view the grammar in Fig.1, which defines expressions and statements of the sublan-
guageC�I , as defining also the correspondingASMdomainsExpandStm. To avoid lengthy
repetitions we include here already the distinctions between checked and unchecked ex-
pressions and blocks, though they are semantically irrelevant in the submodel C�I and start
to play a role only with C�E . The setVexpof variable expressions (lvalues) consists in this
model of the local variables only andwill be refined below.Sexpdenotes the set of statement
expressions than can be used either as (result yielding) expressions or as (result discarding)
statements, such as an assignment to a variable expression using ‘=’ or an assignment op-
erator from the setAopor ‘++’ or ‘ -- ’. Lit denotes the set of literals, similarly forType,
Laband the setCexpof constant expressions whose value is known at compile time.When
referring to the set of sequences of elements from a setItemwe write Items, e.g.Sexps

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 5

Fig. 1. Grammar of expressions and statements in C�I .

byte

double

float

long

short

int

sbyte

ulong

decimal

ushort

char

uint

Fig. 2. The simple types of C�I .

for the set of sequences of statement expressions. We usually write lower case letterse to
denote elements of a setE, e.g.lit for elements ofLit.
The descriptions of implicit numeric conversions in[27, Section 13.1]and of binary

numeric promotions in[27, Section 14.2.6]can be succinctly formulated as follows, using
the type graph in Fig.2 for the simple types of C�, which are the types of C�I (for a
classification of the types of C� see Fig.4).

6 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Definition 1 (Implicit conversion[27, Section 13.1]). We say that there exists animplicit
numeric conversionfrom typeA to B (writtenA ≺ B) iff there exists a finite, non-empty
path of arrows fromA toB in the type graph in Fig.2.We writeA4B forA ≺ B or A = B.
A typeC is called anupper boundof A andB iff A4C andB4C. A typeC is the least
upper boundof A andB iff
• C is an upper bound ofA andB and
• C4D for each upper boundD of A andB.
We write sup(A,B) for the least upper bound ofA andB if it exists.

We assume all the type constraints (on the operand and result values) and precedence
conventions listed in[27] for thepredefined (arithmetical, relational, bit andboolean logical)
operatorsand theexpression types.Asusual eachexpressionnodeexpin theattributedsyntax
tree has as attribute its compile-time typetype(exp).
About type conversions at compile-time we assume that type casts are inserted in the

syntax tree if necessary. For example, if a binary numeric operatorbop is applied to argu-
ments ine1 bop e2, then the least upper boundT of the types ofe1 ande2 must exist and
the expression is transformed into(T) e1 bop (T) e2.

Definition 2 (Binary numeric promotion[27, Section 14.2.6]). The binary numeric pro-
motion consists of applying the following rules:
• If the least upper bound ofA andB exists, then

◦ if sup(A,B)4int , thenA andB are converted toint ,
◦ otherwise,A andB are converted to sup(A,B).

• If the least upper bound ofA andB does not exist, then a compile-time error occurs.

We also assume the syntactical constraints for statements listed in[27], e.g. the following
ones for blocks (where thescope of a local variable(local constant) is defined as the block
in which it is declared, thescope of a labelis the block in which the label is declared,
and a local variable is identified by its nameand the position of its declaration, so that in
particular local variables with the same name in disjoint blocks are considered as different):
• It is not allowed to refer to a local variable (local constant) in a textual position that
precedes its declaration.

• It is not allowed to declare another local variable or local constant with the same name
in the scope of a local variable (local constant).

• It is not allowed for two labels with the same name to have overlapping scopes.
• A goto Labmust be in the scope of a label with nameLab.
• Expressions inconstant declarationsare evaluated at compile-time.
To simplify the exposition of our model we assume some standard syntactical reductions as
indicated in Table1. The correctness of these replacements with respect to[27] can easily
be checked on the basis of our semantics model for C�.

2.1.1. Control-flow analysis
During the static programanalysiswhere the compiler has to verify that the givenprogram

is well-typed, predicatesreachableandnormalwith the following intended meaning are
computed for statements, using the type information contained in the attributed syntax tree

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 7

Table 1
Standard syntactical reductions

exp1 &&exp2 exp1 ? exp2 : false
exp1 || exp2 exp1 ? true : exp2
if (exp) stm if (exp) stmelse ;
++vexp vexp+= 1
-- vexp vexp-= 1
int x = 1, y, z = x * 2; int x; x = 1; int y; int z; z = x * 2;
for (t loc = exp; tst; step) stm { t loc; for (loc = exp; tst; step) stm}

Table 2
Reachability rules for C�I

s is a function body �⇒ reachable(s)
reachable(;) �⇒ normal(;)
reachable(e;) �⇒ normal(e;)
reachable({}) �⇒ normal({})
reachable({ s . . . }) �⇒ reachable(s)
normal(si) in { . . . si si+1 . . . } �⇒ reachable(si+1)
reachable(goto l;) in { . . . l: s . . . } �⇒ reachable(l: s)
normal(s) �⇒ normal({ . . . s})
reachable(if (e) s1 else s2) ∧ e �= false �⇒ reachable(s1)
reachable(if (e) s1 else s2) ∧ e �= true �⇒ reachable(s2)
normal(s1) ∨ normal(s2) �⇒ normal(if (e) s1 else s2)

reachable(while (e) s) ∧ e �= false �⇒ reachable(s)
reachable(while (e) s) ∧ e �= true �⇒ normal(while (e) s)
reachable(break;) in s �⇒ normal(while (e) s)

as the result of parsing and elaboration:

reachable(stm)⇐⇒ stmcan be reached
normal(stm) ⇐⇒ stmcan terminate normally

⇐⇒ the end point ofstmcan be reached

Oneof the languagedesigngoalswas to guarantee the following twoproperties for programs
to be accepted by the compiler:
• during the program execution, onlyreachablepositions are reached,
• normal termination happens only innormalpositions.
These two properties are obtained by checking two sufficient conditions via so-called reach-
ability rules, which can be inductively defined for C�I in Table2 (similarly for do , for ,
switch). 3 For constant boolean expressions in conditional and while statements we as-
sume that they are replaced in the abstract syntax tree bytrue or false .
Unreachable statements indicate programming errors and therefore generate compile-

time warnings. Function bodies that can terminate normally generated compile-time errors,
since at run-time execution could fall off the bottom of the code array.

3We include these rules here to place the corresponding natural language specification in[27] on a firm ground
for a mathematical proof of the above two properties as part of a type safety proof for C�.

8 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

}

 int i = 7;

IL_0000: ldc.i4.7
IL_0001: stloc.0

C# Compiler

definite
assignment

accepted
by the
IL Verifier

type safe

(undecidable)

programs

void Main() {

C# Programs

Intermediate Language (IL)

 ...

Fig. 3. Definite assignment and IL verification.

Another language design goal was to achieve the type safety of well-typed C� pro-
grams, i.e. that (a) variables at run-time contain values that arecompatiblewith the declared
types, and (b) expressions are evaluated at run-time to values that arecompatiblewith their
compile-time types. Among the desired consequences of the type safety of a program one
has that at run-time its variables will never containundefinedvalues, that there are nodan-
gling references, that the program cannotcorrupt thememory, and that the dynamicmethod
lookupalways succeeds. Using the notation explained in the next section such invariants
can be made precise and be proven to hold under appropriate assumptions.4

To guarantee the type safety the compiler checks a sufficient condition computing pred-
icatesbefore, after (for occurrences of statements and expressions in a function body) and
true, false(for the two possible evaluation results of boolean expressions), which imple-
ment the so-called definite assignment rules to assure that a variable isdefinitely assigned
before its value is used. The situation is illustrated in Fig.3. Unfortunately the picture does
not reflect reality. Microsoft has decided that in verified IL (intermediate language) code
local variables are initialized by the run-time system with zero values.5 Hence, also source
code programs that do not fulfill the definite assignment constraints are accepted by the IL
verifier.
A variable occurring in a position is called definitely assigned there, if on every execution

path leading to that position (in the abstract syntax tree) a value is assigned to the variable.

4 For example the following invariants can be proved to hold at run-time: (a)before(pos) ⊆ Definedwhere
Defined = {x ∈ Loc | mem(locals(x)) �= Undef}, (b) after(pos) ⊆ Defined if values(pos) = Norm or
values(pos) ∈ Value. Specifically for boolean expressions holdstrue(pos) ⊆ Defined if values(pos) = True,
the same forfalse. Such proofs can be carried out on the basis of the model developed in this paper, using the
pattern developed in[36, Chapter 8]for proving that Java is type safe. For a different approach see[23].
5Maybe to simplify the job of the JIT verifiers, as one of our referees suggested.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 9

Table 3
Definite assignment for statements

s is a function body before(s) = ∅
; after(;) = before(;)
exp; before(exp) = before(exp;), after(exp;) = after(exp)
break; after(break;) = vars(break;)

continue; after(continue;) = vars(continue;)

goto l; after(goto l;) = vars(goto l;)
stm= { s1 . . . sn} before(s1) = before(stm), after(stm) = after(sn),

before(si+1) = after(si) ∩ goto(si+1) where
goto(l: s) =⋂{before(goto l;) | goto l; reachable instm}
andgoto(s) = vars(s) if s is not a labeled statement

stm= if (e) s1 else s2 before(e) = before(stm), before(s1) = true(e)
before(s2) = false(e), after(stm) = after(s1) ∩ after(s2)

stm= while (e) s before(e) = before(stm), before(s) = true(e),
after(stm) = false(e) ∩ break(s) where
break(s) = ⋂{before(break;) | break; reachable ins}

Thus the intended meaning of the above predicates is as follows, where by “elaboration” of
anitemwemean “execution”, ifitemis a statement, and “evaluation” if it is an expression:

x ∈ before(item): x is definitely assignedbeforethe elaboration ofitem
x ∈ after(item) : x is definitely assignedafter normal elaboration ofitem
x ∈ true(exp) : x is definitely assignedafter expevaluates totrue
x ∈ false(exp) : x is definitely assignedafter expevaluates tofalse

To provide a basis for a mathematical analysis, we turn the verbally stated definite as-
signment rules of[36, Section 12.3.3]into a precise set of equational constraints, where
vars(stm) = {x | stmis in the scope ofx}.
Table3 contains the constraints for the statements. Table4 contains the equations for

specific boolean expressions, which are imposed for the eager (short-circuit) evaluation
of boolean expressions. Note that there is no equation in Table4 for after sets since by
definitionafter(exp) = true(exp) ∩ false(exp). If expis a boolean expression which is not
an instance of one of the expressions in Table4, then the following are constraints forexp:
true(exp) = after(exp) andfalse(exp) = after(exp).
Table5 contains the equations for non-boolean expressions. In all other cases, ifexp

is an expression which has thedirect subexpressionse1, e2, . . . , en, then the left-to-right
evaluation scheme yields
• before(e1) = before(exp),
• before(ei+1) = after(ei) for i ∈ [1 . . n− 1],
• after(exp) = after(en).
Due to the goto statement the above constraints do not specify in a unique way the sets of
variables that have to be considered as definitely assigned. Consider the following block
(from [21]):

{ int i = 1 ; L : goto L ; }

10 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Table 4
Definite assignment for boolean expressions

true true(true) = before(true), false(true) = vars(true)

false true(false) = vars(false), false(false) = before(false)

exp= ! e before(e) = before(exp), true(exp) = false(e)
false(exp) = true(e)

exp= (e1&&e2) before(e1) = before(exp), before(e2) = true(e1),
true(exp) = true(e2), false(exp) = false(e1) ∩ false(e2)

exp= (e1 || e2) before(e1) = before(exp), before(e2) = false(e1),
true(exp) = true(e1) ∩ true(e2), false(exp) = false(e2)

exp= (e0 ? e1 : e2) before(e0) = before(exp), before(e1) = true(e0)
before(e2) = false(e0), true(exp) = true(e1) ∩ true(e2)
false(exp) = false(e1) ∩ false(e2)

Table 5
Definite assignment for arbitrary expressions

loc loc∈ before(loc), after(loc) = before(loc)
lit after(lit) = before(lit)
exp= (loc= e) before(e) = before(exp), after(exp) = after(e) ∪ {loc}
exp= (loc op= e) loc ∈ before(exp), before(e) = before(exp)

after(exp) = after(e)
exp= (e0 ? e1 : e2) before(e0) = before(exp), before(e1) = true(e0)

before(e2) = false(e0), after(exp) = after(e1) ∩ after(e2)

Then the constraints of the definite assignment analysis are satisfied for bothbefore(L:
goto L;) = ∅ andbefore(L: goto L;) = {i}. Hence during the analysis the greatest
sets of variables that satisfy the constraints forbeforeandafter have to be computed (cf.
[21]). For blocks without goto statements, however, it can be proved from the above axioms
that thebeforeset determines theafterset in a unique way.

2.2. Dynamic semantics forC�I

Thedynamic semantics forC�I describes theeffect of statement executionandexpression
evaluation upon the program state, so that the transition rule for C�I (the same for its
extensions) has the form

EXECCSHARPI ≡
EXECCSHARPEXPI
EXECCSHARPSTMI

The first subrule defines one execution step in the evaluation of expressions; the second
subrule defines one step in the execution of statements.
To make the further model refinements possible via purely incremental extensions, our

definition proceeds by walking through the attributed syntax tree and computing at each

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 11

node the effect of the program construct attached to the node. We formalize the walk by
a cursor�, whose position in the tree—represented by a dynamic functionpos:Pos—is
updated using static tree functions, leading from a node in the tree down to itsfirst child,
from there to thenextbrother orupto the parent node (if any), as illustrated by the following
self-explanatory example. The moves ofposcontain implicitly the control-flow graph of
C�. A function label:Pos→ Labeldecorates nodes with the information which identifies
the grammar rule associated to the node. For the sake of notational succinctness we use
concrete syntax of C� to describe the labels, thus avoiding the explicit introduction of
auxiliary non-terminals the reader probably does not want to see. In the following example
the four possible cursor positions are reachable from the root by following the tree functions
first, nextandup. Thelabelof the root node is the auxiliary non-terminalIf , identifying the
grammar rule which produces in one stepif (exp) stm1 else stm2.

if (exp) stm1 else stm2

For updating the values of local variables in the memory we use two dynamic functions
locals: Loc → Adr andmem:Adr → SimpleValue∪ {Undef}, which assign to local vari-
ables memory addresses and store the values there. Since in C�I the values are of simple
types, the equationValue= SimpleValue∪Adr holds, which will be refined in the extended
models to include also references and structs. The uniquely identified local variables are
modeled by stipulatingLoc = Identifier× Pos, wherePos is the set of positions in the
abstract syntax tree.
The indirection through memory addresses is not really needed in C�I . In C�I one could

assign values directly to local variables without storing them in an abstract memory. The
addresses, however, are needed later for call-by-reference withref andout parameters
(one of the major differences between C� and Java from the modelling point of view).
Statements can terminate normally or abruptly, where in C�I the reasons of abruption are

from the setAbr = Break | Continue| Goto(Lab), to be refined for the extended models.
We use a dynamic functionvalues:Pos→ Resultto store intermediate evaluation results
from the set

Result= Value∪ Abr ∪ {Undef,Norm}.
For the initial state we assume
• mem(i) = Undef for everyi ∈ Adr,
• pos= root position of the attributed syntax tree,
• locals(x) ∈ Adr for every variablex. 6

As intermediatevaluesat a positionp the cursor is at or is passing to, the computation may
yield directly a simple value; atAddressPositions as defined below it may yield an address;

6This amounts to assuming that the compiler chooses an address for each variable.

12 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

but it may also yield amemValuewhich has to be retrieved indirectly via the given address
(where for C�I the memory value of a given typet at a given addressadr is defined by
memValue(adr, t) = mem(adr); the parametertwill become relevant only in the refinement
of memValuein C�O and C�U). This is described by the following two macros:

YIELD(val, p) ≡
values(p) := val
pos:= p

YIELDINDIRECT(adr, p) ≡
if AddressPos(p) then YIELD(adr, p)
elseYIELD(memValue(adr, type(p)), p)

We will use the macros in the two forms YIELD(val) ≡ YIELD(val,pos) and
YIELDUP(val) ≡ YIELD(val,up(pos)). Similarly we have two forms also for the second
macro: YIELDINDIRECT(adr) and YIELDUPINDIRECT(adr).
Being in a context where an address and not a value is required can be defined as follows:

AddressPos(�) ⇐⇒ FirstChild(�)∧
(label(up(�)) ∈ {++, -- } ∨ label(up(�)) ∈ Aop)

whereFirstChild(�) ⇐⇒ first(up(�)) = �

To further reduce any notational overhead not needed by the human reader, in spelling out
the rules belowwe identify positionswith theoccurrencesof the syntactical constructs nodes
are decorated with. This explains updates likepos:= expor pos:= stm, which are used as
shorthand for updatingposto the node labeled with the corresponding occurrence ofexp
respectivelystm. 7 Furthermore, for a succinct formulation we use a macrocontext(pos) to
describe the context of the currently to be handled expression or statement or intermediate
result, which has to be matched against the syntactically possible cases (in the textual order
of the rule) to select the appropriate computation step. If the elaboration of the subtree at
the positionposhas not yet started, thencontext(pos) is the construct encoded by the labels
of posand of its children. Otherwise, ifposcarries already its result invalues, context(pos)
is the pseudo-construct encoded by the labels of the parent node ofposand of its children
after replacing the already evaluated constructs by theirvaluesin the corresponding node.
This explains notations likeuop �val to describe thecontextof pos, whereposis marked
with the cursor (�), resulting from the successful evaluation of the argumentexpof the
constructuop exp(encoded byup(pos) and its childpos), just beforeuop is applied toval
to YIELDUP(Apply(uop, val)).
It thus remains to define the two submachines for expression evaluation and statement

execution. This is done in a modular fashion, grouping behaviorally similar instructions
into one parameterized instruction.8

7An identification of this kind, which is common in mathematics, has clearly to be resolved in an executable
version of the model. See for example the formulation of the ASM model for Java in[36].
8 The specializations can be regained instruction-wise by mere parameter expansion, a form of refinement that

is easily proved to be correct.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 13

2.2.1. Expression evaluation rules
We are now ready to define the machine EXECCSHARPEXPI in a compositional way,

namely proceeding expression-wise: for each syntactical form of expressions there is a set
of rules covering each intermediate phase of their evaluation. The machine passes control
from unevaluated expressions to the appropriate subexpressions until an atom (a literal or
a local variable) is reached. It can continue its computation only as long as no operator
exception occurs, as a consequence it does not distinguish between checked and unchecked
expression evaluation—the extension by rules to handle exceptions is defined in the model
extension C�E . The expressions for numeric casts will be refined in C�O and in C�E . The
macro WRITEMEM(adr, t, val) denotes heremem(adr) := val; it will be refined in the
model for C�O.

EXECCSHARPEXPI ≡ match context(pos)
lit → YIELD(ValueOfLiteral(lit))
loc → YIELDINDIRECT(locals(loc))

uop exp → pos:= exp
uop�val → if ¬UopException(uop, val) then YIELDUP(Apply(uop, val))

exp1 bop exp2 → pos:= exp1
�val bop exp → pos:= exp
val1 bop�val2 → if ¬BopException(bop, val1, val2) then

YIELDUP(Apply(bop, val1, val2))

exp0 ? exp1 : exp2 → pos:= exp0
�val ? exp1 : exp2 → if val then pos:= exp1 elsepos:= exp2
True? �val : exp →YIELDUP(val)
False? exp: �val →YIELDUP(val)

loc = exp → pos:= exp
loc = �val →{WRITEMEM(locals(loc), type(loc), val), YIELDUP(val)}
(type) exp → pos:= exp
(type) �val → if type(pos) ∈ NumericType∧ type∈ NumericTypethen

if ¬UopException(type, val) then
YIELDUP(Convert(type, val))

vexp op= exp → pos:= vexp
�adr op= exp → pos:= exp
adr op= �val → let t = type(up(pos)) and v = memValue(adr, t) in

if ¬BopException(op, v, val) then
let w = Apply(op, v, val) and r = Convert(t, w) in
{WRITEMEM(adr, t, r), YIELDUP(r)}

vexp op → pos:= vexp// for postfix operatorsop∈ {++, -- }
�adr op → let old = memValue(adr, type(pos)) in

if ¬UopException(op,old) then
WRITEMEM(adr, type(up(pos))
Apply(op,old))
YIELDUP(old)

14 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

checked (exp) → pos:= exp
checked (�val) →YIELDUP(val)
unchecked (exp) → pos:= exp
unchecked (�val) →YIELDUP(val)

Being in a checked context is used to define whether operators throw an overflow exception
(in which case a rule will be added in the model for C�E). The general rule is that operators
for the typedecimal always throw overflow exceptions whereas operators for integral
types only throw overflow exceptions in a checked context except for the division by zero.
By default every position is unchecked, unless explicitly declared otherwise.

Checked(�) ⇐⇒ label(�) = Checked∨
(label(�) �= Unchecked∧ up(�) �= Undef∧ Checked(up(�)))

UopException(uop, val) ⇐⇒ Checked(pos) ∧ Overflow(uop, val)

BopException(bop, val1, val2) ⇐⇒
DivisonByZero(bop, val2) ∨ DecimalOverflow(bop, val1, val2) ∨
(Checked(pos) ∧ Overflow(bop, val1, val2))

2.2.2. Statement execution rules
The machine EXECCSHARPSTMI is defined below statement-wise. It transfers control

from structured statements to the appropriate substatements, until the current statement
has been computed normally or abrupts the computation. Abruptions trigger the control
to propagate through all the enclosing statements up to the target labeled statement. The
concept of propagation is defined for C�I in such a way that in the refined models it is
easily extended to abruptions due to return from procedures or to exceptions.9 In case of
a new execution of the body of a while statement, the previously computed intermediate
results have to be cleared.10 For the sake of brevity we skip the analogous transition rules
for statementsdo , for , switch , goto case , goto default . Since we formulate
the model for the human reader, we also use the. . .-notation, for example in the rules for
abruption or for sequences of block statements. This avoids having to fuss with an explicit
formulation of the context, typically determinedby awalk througha list. This simplification,
which is tailored for thehuman reader, caneasily be resolved for anexecutablemodel version
without increasing the number of rules.

EXECCSHARPSTMI ≡ match context(pos)
; → YIELD(Norm)

exp; → pos:= exp
�val; →YIELDUP(Norm)

9 For C�I alone it would be simpler to transfer control directly by updatingposto the value of a corresponding
static function.
10CLEARVALUES is needed in the present rule formulation, which is close to an executable format. In a more
abstract SOS-style, as used for the Java model in[36], it would not be necessary because there the intermediate
valuescan be written into a dynamic function for the still to be executed rest program.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 15

break; →YIELD(Break)
continue; →YIELD(Continue)
goto lab; →YIELD(Goto(lab))

if (exp) stm1 else stm2 → pos:= exp
if (�val) stm1 else stm2 → if val then pos:= stm1 elsepos:= stm2
if (True) �Normelse stm →YIELDUP(Norm)
if (False) stmelse �Norm →YIELDUP(Norm)

while (exp) stm → pos:= exp
while (�val) stm → if val then pos:= stm

elseYIELDUP(Norm)
while (True) �Norm →{pos:= up(pos), CLEARVALUES(up(pos))}
while (True) �Break →YIELDUP(Norm)
while (True) �Continue→{pos:= up(pos), CLEARVALUES(up(pos))}
while (True) �abr →YIELDUP(abr)

type loc; → YIELD(Norm)

lab: stm → pos:= stm
lab: �Norm →YIELDUP(Norm)

checked block → pos:= block
checked �Norm →YIELDUP(Norm)
unchecked block → pos:= block
unchecked �Norm →YIELDUP(Norm)

. . . �abr . . . → if up(pos) �= Undef∧ PropagatesAbr(up(pos)) then
YIELDUP(abr)

{ } →YIELD(Norm)
{ stm . . . } → pos:= stm
{ . . . �Norm} →YIELDUP(Norm)
{ . . . �Norm stm. . . } → pos:= stm
{ . . . �Goto(l) . . . } → let � = GotoTarget(first(up(pos)), l)

if � �= Undef then
{pos:= �, CLEARVALUES(up(pos))}

elseYIELDUP(Goto(l))
{ . . . �abr . . . } →YIELDUP(abr)

In C�I abruptions are propagated upwards except at the following statements:

PropagatesAbr(�) ⇐⇒ label(�) /∈ {Block,While,Do,For,Switch}

To compute the target of a label in a list of block statements we define:

GotoTarget(�, l) =
if label(�) = Lab(l) then �
elseif next(�) = Undef then Undef
elseGotoTarget(next(�), l)

16 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

The auxiliary macro CLEARVALUES(�) to clear all values in the subtree at position� can be
defined by recursion as follows, proceeding from top to bottom and from left to right:11

CLEARVALUES(�) ≡
values(�) := Undef
if first(�) �= Undef then CLEARVALUESSEQ(first(�))

CLEARVALUESSEQ(�) ≡
CLEARVALUES(�)
if next(�) �= Undef then CLEARVALUESSEQ(next(�))

3. C�C : refining C�I by static class features

In this section we refine the imperative core C�I to C�C by adding classes (modules)
concentrating upon their static features (static fields, methods, constructors), including their
initialization and the parameter mechanism that provides value,ref andout parameters.
For such a refinement we (a) extend the ASM universes and functions, or introduce new
ones, to reflect the grammar extensions for expressions and statements, (b) add the appro-
priate constraints needed for the static analysis of the new items (type constraints, definite
assignment rules), (c) extend some of the macros, e.g.PropagatesAbr(�), to make them
work also for the newly occurring cases, (d) add rules which define the semantics of the
new instructions that operate over the new domains.

3.1. Static semantics ofC�I

In C�C a program is a set of compilation units, each coming with “using directives” and
declarations of names spaces (including a global namespace) and types (for classes and
interfaces12) in the global namespace. For simplicity of exposition, we disregard “using”
directives and nested namespaces by assuming everywhere the adoption of (equivalent)
fully qualified names. The precise syntax of classes and their static members, the rules for
the accessibility of types and members via the access modifiers (public, internal, protected,
private) and illustrating examples are spelt out in[12]. We define here the extension of
the grammars forVexp, Sexp, Stmand thereby of the corresponding ASM domains, which
reflects the introduction of sets ofClasses with staticFields and staticMethods in C�C . The
new setArg of arguments appearing here reflects that besides value parameters alsoref
andout parameters can be used.

Vexp ::= . . . | Field | Class‘ . ’ Field

Sexp::= . . . | Meth ([Args]) | Class‘ . ’ Meth ([Args])

11 Intuitively it should be clear that the execution of this recursiveASM provides simultaneously—in one step—
the set of all updates of all its recursive calls, as is needed here for the clearing purpose; see[10] for a precise
definition.
12Note that struct and enum types and delegates are introduced by further refinement steps below.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 17

Arg ::= Exp | ‘ ref ’ Vexp| ‘out ’ Vexp

Args ::= Arg {‘ , ’ Arg}
Stm ::= . . . | ‘ return ’ Exp ‘ ; ’ | ‘ return ’ ‘ ; ’

The type constraints for the new expressions and the return statement are spelt out in[12].
The difference betweenref andout parameters at function calls and in function bodies is
reflected by including asAddressPositions all nodes whose parent node is labeled byref
or out and by adding the following definite assignment constraints:
• ref arguments must be definitely assignedbeforethe function call.
• out arguments are definitely assignedafter the function call.
• ref parametersandvalueparametersof a functionaredefinitely assignedat thebeginning
of the function body.

• out parameters must be definitely assigned when the function returns.
Therefore the definite assignment constraints for expressions are extended by the follow-
ing constraints for general argument expressions in function calls and forref andout
argument expressions:
• Forexp= M(args) :

◦ before(args) = before(exp)
◦ RefParams(args) ⊆ after(args)
◦ after(exp) = after(args) ∪ OutParams(args)

• Forexp= (ref e) or exp= (out e):
◦ before(e) = before(exp)
◦ after(exp) = after(e)

The definite assignment constraints for statements are extended for function bodies and
return statements as follows:
• If s is the body ofM, then

◦ before(s) = ValueParams(M) ∪ RefParams(M)
• If stm= return; is inM, then

◦ OutParams(M) ⊆ before(stm)
◦ after(stm) = vars(stm)

• If stm= return e; is inM, then
◦ before(e) = before(stm)
◦ OutParams(M) ⊆ after(e)
◦ after(stm) = vars(stm)

The presence of to-be-initialized classes and of method calls is reflected by the introduction
of new universes to denote methods, the initialization status of a type (which will be refined
below by exceptions) and the sequence of still active method calls (frame stack):

Meth= Type× Msig
TypeState= Linked | InProgress| Initialized
Frame= Meth× Pos× Locals× Values
whereValues= (Pos→ Result) andLocals= (Loc→ Adr)

A method signatureMsig consists of the name of a method plus the sequence of types
of the arguments of the method. A method is uniquely determined by the type in which
it is declared and its signature. The reasons for abruptions are extended by

18 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

method return:

Abr = . . . | Return| Return(Value)

3.2. Dynamic semantics ofC�I

To dynamically handle the addresses of static fields (global or class variables), the ini-
tialization state of types, the current method, the execution stack and the (initially) to be
initialized type we use the following new dynamic functions:

globals:Type× Field → Adr
typeState:Type→ TypeState

frames: List(Frame)
meth:Meth

We extend the stipulations for the initial state as follows:
• typeState(c) = Linkedfor each classc
• meth= EntryPoint::Main() [EntryPointis the main class]
• pos= body(meth) [The root position of the body]
• locals= values= ∅ andframes= []
The submachine EXECCSHARPC extends the machine EXECCSHARPI for C�I by additional
rules for the evaluation of the new expressions and for the execution of return statements. In
the same way the further refinements in the sections below consist in the parallel addition
of appropriate submachines.

EXECCSHARPC ≡
EXECCSHARPI
EXECCSHARPEXPC
EXECCSHARPSTMC

3.2.1. Expression evaluation rules
The rules for class field evaluation in the submachine EXECCSHARPEXPC are analogous

to those for the evaluation of local variables in EXECCSHARPEXPI , except for usingglobals
instead oflocalsand for the additional clause for class initialization. The rules for method
calls use themacro INVOKESTATIC definedbelowand reflect that the arguments are evaluated
from left to right.13

EXECCSHARPEXPC ≡ match context(pos)
c.f → if Initialized(c) then YIELDINDIRECT(globals(c::f))

elseINITIALIZE (c)
c.f = exp → pos:= exp
c.f = �val → if Initialized(c) then

WRITEMEM(globals(c::f), type(c::f), val)
YIELDUP(val)

elseINITIALIZE (c)

13These are the rules to be modified in case one wants to specify another evaluation order for expressions,
involving the use of the ASMchooseconstruct if some non-deterministic choice has to be formulated. For a
discussion of such model variations we refer to[40] where anASMmodel is developed which can be instantiated
to capture the different expression evaluation strategies in Ada95, C, C++, Java, C� and Fortran.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 19

c.m(args) → pos:= (args)
c.m�(vals) → INVOKESTATIC(c::m, vals)

ref vexp → pos:= vexp
ref �adr →YIELDUP(adr)

out vexp → pos:= vexp
out �adr →YIELDUP(adr)

() →YIELD([])
(arg, . . .) → pos:= arg
(val1, . . . , �valn) →YIELDUP([val1, . . . , valn])
(. . .�val, arg . . .) → pos:= arg

Themacro INVOKESTATIC invokes themethod if the initialization of its class is not triggered,
otherwise it initializes the class. The initialization of a class (or struct, see Section4) is
not triggered if the class is already initialized.14 For methods which are not declared
external, INVOKEMETHOD updates the frame stack and the current frame in the expected
way, allocating via INITLOCALSfor every local variableor valueparameter anewaddressand
copyingevery valueargument there. Sincewewill also have to dealwith externalmethods—
whose declaration includes anextern modifier and which may be implemented using a
languageother thanC�—weprovidehere for their invocationasubmachine INVOKEEXTERN,
to be defined separately depending on the class of external (e.g. library) methods.15 The
predicateStaticCtorrecognizes static class constructors; their implicit call interrupts the
member access atpos, to later return to the evaluation ofposinstead ofup(pos).We separate
thecurrent frame—consistingofmeth,pos, localsandvalues—from thestackof such frames
to notationally smoothen the transition from C�I to C�C .

INVOKESTATIC(c::m, vals) ≡
if not TriggerInit(c) then INVOKEMETHOD(c::m, vals)
elseINITIALIZE (c)
whereTriggerInit(c) = ¬Initialized(c)

INVOKEMETHOD(c::m, vals) ≡
if extern ∈ modifiers(c::m) then INVOKEEXTERN(c::m, vals)
else letp = if StaticCtor(c::m) then poselseup(pos) in

frames:= push(frames, (meth, p, locals, values))
meth := c::m
pos := body(c::m)
values := ∅
INITLOCALS(c::m, vals)

14As analyzed in[20], it is also not triggered if the class is marked with the implementation flagbeforefieldinit,
indicating that the reference of the static method does not trigger the class (or struct) initialization. If one wants
to model this flag the definition has to be refined toTriggerInit(c) = ¬Initialized(c) ∧ ¬beforefieldinit(c) and
furthermore in Section5.
15For an illustration of this use of external methods see below the model for delegates.

20 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

The following definition for the initialization of local variables reflects that C� permits to
pass function call parameters by value, as Java does, but also byref erence. Alsoout
parameters are allowed, treated asref parameters except that they need not be definitely
assigned until the function call returns.16

In the following definition, all (also simultaneous) applications of the external function
newduring the computation of the ASM are supposed to provide pairwise different fresh
elements from the underlying domainAdr. See[22,16, 2.4.4]for a justification of this
assumption. See also the end of Section4 where we provide an abstract specification of
the needed memory allocation to addresses of references and objects of struct type and to
their instance fields.paramIndex(c::m, x) yields the index of the formal parameterx in the
signature ofc::m.

INITLOCALS(c::m, vals) ≡
forall x ∈ LocalVars(c::m) do // addresses for local variables

locals(x) := new(Adr, type(x))
forall x ∈ ValueParams(c::m) do // copy value arguments

let adr = new(Adr, type(x)) in
locals(x) := adr
WRITEMEM(adr, type(x), vals(paramIndex(c::m, x)))

forall x ∈ RefParams(c::m) ∪ OutParams(c::m) do // ref, out arguments
locals(x) := vals(paramIndex(c::m, x))

3.2.2. Statement execution rules
The rules for method return in the submachine EXECCSHARPSTMC trigger an abruption

upon returning from amethod, resulting (via the propagation of this abruption to the begin-
ning of the method body where it occurred) in the execution of the machine EXITMETHOD.
The rule to YIELDUP(Norm) does not capture falling off the method body, but yields up
the result of the normal execution of the invocation of a method with void return type in an
expression statement.

EXECCSHARPSTMC ≡ match context(pos)
return exp; → pos:= exp
return �val; →YIELDUP(Return(val))
return; →YIELD(Return)

Return → if pos= body(meth) ∧ ¬Empty(frames) then
EXITMETHOD(Norm)

Return(val) → if pos= body(meth) ∧ ¬Empty(frames) then
EXITMETHOD(val)

�Norm; → YIELDUP(Norm)

The machine EXITMETHOD restores the frame of the invoker and passes the result value
(if any). Upon normal return from a static constructor it also updates thetypeStateof the

16To reflect different parameter passingmechanisms as encountered in other programming languages, due to the
modular character of our model essentially only the above submachine INITLOCALSwould have to be appropriately
modified.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 21

relevant class asInitialized. We also add a rule FREELOCALS to free the memory used
for local variables and value parameters, using an abstract notion FREEMEMORY of how
addresses of local variables and value parameters are actually de-allocated.17

EXITMETHOD(result) ≡
let (oldMeth,oldPos,oldLocals,oldValues) = top(frames) in

meth := oldMeth
pos := oldPos
locals := oldLocals
frames:= pop(frames)
if StaticCtor(meth) ∧ result= Norm then

typeState(type(meth)) := Initialized
values:= oldValues

else
values:= oldValues⊕ {oldPos �→ result}

FREELOCALS

FREELOCALS≡
forall x ∈ LocalVars(meth) ∪ ValueParams(meth) do
FREEMEMORY(locals(x), type(x))

Following [27, Sections 17.11,17.4.5.1,10.11,10.4.5.1]a typec is considered as initialized
if its static constructor has been invoked (see the update oftypeState(c) to InProgressin
INITIALIZE below) or has terminated normally (see the update oftypeState(c) to Initialized
in EXITMETHODabove). We therefore define:

Initialized(c) ⇐⇒ typeState(c) = Initialized∨ typeState(c) = InProgress

To initialize a class its static constructor is invoked (.cctor = class constructor). This
macro will be further refined in C�E to account for exceptions during an initialization.

INITIALIZE (c) ≡
if typeState(c) = Linked then

typeState(c) := InProgress
forall f ∈ staticFields(c) do

let t = type(c::f) in WRITEMEM(globals(c::f), t,defaultValue(t))
INVOKEMETHOD(c::.cctor , [])

Note that in C� the initialization of a class does not trigger the initialization of its direct
base class, differing on this point from Java where the rule for calling static constructors
(see[36, Fig. 4.5]) triggers the initialization of the superclass in case the superclass is not
yet initialized.
With respect to the execution of initializers of static class fields the ECMA standard

[27, Section 17.4.5.1]says that the static field initializers of a class correspond to a se-
quence of assignments that are executed in the textual order in which they appear in the

17Under the assumption of a potentially infinite supply of addresses, which is often made when describing the
semantics of a programming language, one can dispense with FREELOCALS.

22 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

class declaration. If a static constructor exists in the class, execution of the static field
initializers occurs immediately prior to executing that static constructor. Otherwise, the
static field initializers are executed at animplementation-dependenttime prior to the first
use of a static field of that class. Our model expresses the decision taken by Microsoft’s
current C� compiler, which in the second case creates a static constructor. If one wants
to reflect also the non-determinism suggested by the ECMA formulation, one can formal-
ize the implementation-dependent external control by a monitored functiontypeToBeIni-
tialized (which by the way can also be used for the classes and structs classified by an
implementation flag asbeforefieldinittype). The C� interpreter then takes the following
form:18

if typeToBeInitialized�= Undef then
INITIALIZE (typeToBeInitialized)

elseEXECCSHARP

4. Refinement C�O of C�C by object related features

In this section we refine the static class features of C�C by adding objects (for class
instances, comprising arrays and structs) together withinstancefields, methods and cons-
tructors19 as well as inheritance (including overriding and overloading of methods). Ac-
cordingly we extend theASM universes and functions of C�C to reflect the new expressions
and statements together with the appropriate constraints and new rules, using appropriate
refinements of some of the macros to define the semantics of the new instructions of C�O.
For the detailed definition of the syntax of (members of) classes, interfaces, structs, etc., and
of the constraints for the new modifiers (abstract , sealed , readonly , volatile ,
virtual , override) together with illustrating examples, we refer the reader to[12].

4.1. Static semantics ofC�O

The first extension concerns the setsExp,Vexp, Sexpwhere the new reference and array
types appear.Rankserves to denote the dimension of array types;NonArrayTypestands for
value types, classes and interfaces and will be extended in C�D to comprise also delegates.
Value types represent a feature that distinguishes C� from Java. In C�I we have cast expres-
sions(t) expwhere the typet and the type ofexpare numeric types. Here, we extend the
grammar to(t) expwheret and the type ofexpcan be any type. ARefExpis an expression

18This is discussed in detail in[20]. The reader finds there also a detection of further class initialization features
that are missing in the ECMA specification, related to the definition of when a static class constructor has to be
executed and to the initialization of structs.
19Destructors or finalizers which relate to garbage collection are not modeled here.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 23

null type
delegate type
array type
interface type
class type

decimal

return type

integral type

sbyte
short
int
long
char

byte
ushort
uint
ulong

floating−point type

float
double

numeric typebool

simple type

value type reference type

typevoid

enum type struct type

Fig. 4. The classification of types of C�.

of a reference type and anArrayExpis an expression of an array type.

Exp ::= . . . | ‘null ’ | ‘ this ’ | ‘ typeof ’ ‘ (’ RetType‘) ’ | Exp ‘ is ’ Type
| Exp ‘as ’ RefType| ‘ (’ Type‘) ’ Exp
| ‘new’ NonArrayType‘ [’ Exps‘] ’ {Rank} [ArrayInitializer]

Vexp ::= . . . | Vexp‘ . ’ Field | RefExp‘ . ’ Field | ‘base ’ ‘ . ’ Field
| ArrayExp‘ [’ Exps‘] ’

Sexp ::= . . . | ‘new’ Type([Args]) | Exp ‘ . ’ Meth ([Args])
| ‘base ’ ‘ . ’ Meth ([Args])

Exps ::= Exp{‘ , ’ Exp}
Rank ::= ‘ [’ { ‘ , ’ } ‘] ’

A this in an instance constructor or instance method of a struct is considered to be aVexp.
When athis occurs in a class it is not aVexp.
The extended type classification where simple types become aliases for struct types is

re-assumed by Fig.4. We refer the reader to[12] for the detailed list of new type con-
straints. Also the constraints for overriding and overloading of methods and the resolution
of overloaded methods at compile-time are spelt out there.
The subtype relation (i.e. the standard implicit conversion) is based on the inheritance

relation—defined as a finite tree with rootobject —together with the “implements” re-
lation between classes and interfaces. It is defined as follows (and should not be confused

24 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

with the classification of types in Fig.4):
• T any type�⇒ T4object andT4T ,
• classSderived fromT �⇒ S4T ,
• class, interface or structS implements interfaceT �⇒ S4T ,
• T array type�⇒ T4System.Array ,
• T delegate type�⇒ T4System.Delegate ,
• T value type�⇒ T4System.ValueType ,
• T array or delegate type�⇒ T4System.ICloneable ,
• T reference type�⇒ �4T , [� is the null type],
• SandT reference types,S4T �⇒ S[R1] · · · [Rk] 4T [R1] · · · [Rk] .
Note that types of one category in Fig.4 can be subtypes of another (disjoint) category. For
example, if a struct typeS implements the interfaceI, then (the value type)S is considered
to be a subtype of (the reference type)I.
We list here the additional definite assignment rules for local variables of struct

type:
• If p is a local variable of a struct typeS, thenp.f is considered as a local variable for
each instance fieldf of S.

• A local variablep of struct typeS is definitely assigned⇐⇒
p.f is definitely assigned for each instance fieldf of S.

We assume that as a result of field andmethod resolution the attributed syntax tree has exact
information. Each field access has the formT ::f wheref is a field declared in the typeT.
Each method call has the formT ::m(args) wherem is the signature of a method declared
in typeT. Moreover, at compile-time certain expressions are reduced to basic expressions
as follows.
For the base access of fields and methods we have:

• base. f in classC is replaced bythis. B::f , whereB is the first base class ofCwhere
the fieldf is declared.

• base. m(args) in classC is replacedbythis. B::M(args) ,whereB::M is themethod
signature of the method selected by the compiler (the set of applicable methods is con-
structed starting in thebase classof C). This selection algorithm is described in[12],
formalizing the conditions stated in[27, Section 14.4.2/3].

For instance field access and class instance creation we have:
• If f is a field, thenf is replaced bythis. T ::f , wheref is declared inT.
• Let T be a class type. Then the instance creationnew T ::M(args) is replaced by
new T . T ::M(args) .

Hence we split an instance creation expression into a creation part and an invocation of
an instance constructor. To make the splitting correctly reflect the intended meaning of
new T ::M(args) , we assume in our model that class instance constructors return the
value ofthis .
For instance constructors of structs one has to reflect that in addition they need an address

for this . Also for constructors of structs we assume that they return the value ofthis .
LetSbe a struct type. Then the following transformations are applied:
• An assignmentvexp= new S::M(args) is replaced byvexp. S::M(args) . This reflects
that such anew triggers no object creation or memory allocation since structs get their
memory allocated at declaration time.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 25

• Other occurrences ofnew S::M(args) are replaced byx. S::M(args) , wherex is a new
temporary local variable of typeS.

For automatic boxing we have:
• An assignmentvexp= exp is replaced byvexp= (T) exp if type(exp) is a value type,
T = type(vexp) andT is a reference type. In this case we must havetype(exp)4T .

• An argumentarg is replaced by(T) arg if type(arg) is a value type, the selected method
expects an argument of typeT andT is a reference type. In this case we must have
type(arg)4T .

4.2. Dynamic semantics forC�O

We are now ready to describe the extension of the dynamic state for the model of C�O.
The domain of values is extended to contain also references (assumingRef∩Adr = ∅ and
null ∈ Ref) and struct values:Value= SimpleValue∪ Adr ∪ Ref∪ Struct. The setStruct
of struct values can be defined as the set of mappings fromStructType::Field toValue. The
value of an instance field of a value of struct typeT can then be extracted by applying the
map to the field name, i.e.structField(val, T , f).
Two dynamic functions keep track of therunTimeType:Ref → Typeof references

and of the type objecttypeObj:RetType→ Ref of a given type, whereRetType ::=
Type | ‘void ’. The memory function is extended to store also references:mem:Adr →
SimpleValue∪ Ref∪ {Undef}. For boxing we need a dynamic functionvalueAdr:Ref →
Adr to record the address of a value in a box. IfrunTimeType(ref) is avalue type t, then
valueAdr(ref) is the address of the struct value of typet stored in the box. The static function
instanceFields:Type→ Powerset(Type::Field) yields the set of instance fields of any given
type t; if t is a class type, it includes the fields declared in base classes oft. We use the
common programming notationType::Field instead of the set-theoretic product set nota-
tion. We abstract from the implementation-dependent layout of structs and objects and use
a functionfieldAdr: (Adr ∪ Ref) × Type::Field → Adr to record addresses of fields. This
function satisfies the following properties:
• If t is astruct type, thenfieldAdr(adr, t ::f) is the address of fieldf of a value of typet
stored inmemat addressadr.

• A value of struct typet at addressadr occupies the following addresses inmem:

{fieldAdr(adr, f) | f ∈ instanceFields(t)}
• If runTimeType(ref) is aclass type, thenfieldAdr(ref , t ::f) is the address of fieldt ::f of
the object referenced byref.

• An object of classc is represented by a referencerefwith the propertyrunTimeType(ref)
= c and occupies the following addresses inmem:

{fieldAdr(ref , f) | f ∈ instanceFields(c)}
A function elemAdr:Ref × N∗ → Adr records addresses of array elements. Thethis
reference is treated as first parameter and is passed by value. ThereforeparamIndex(c::m,
this) = 0 andthis is an element ofValueParams(c::m).

26 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

For the refinement of the EXECCSHARPC transition rules it suffices to add the new rule
EXECCSHARPEXPO for evaluating the new expressions, since C�O introduces no new state-
ments.

EXECCSHARPO ≡
EXECCSHARPC
EXECCSHARPEXPO

For better readability we organize the numerous EXECCSHARPEXPO rules for each of the
new expressions into parallel submachines each of which collects the rules for expressions
which belong to the same category (for type testing and casting, for fields, for arrays). As
analyzed in[20], the invocation of an instance constructor of a class may trigger the class
initialization.

EXECCSHARPEXPO ≡ match context(pos)
null → YIELD(null)
this → YIELDINDIRECT(locals(this))

TESTCASTEXPO
FIELDEXPO
new c→ let ref = new(Ref, c) in

runTimeType(ref) := c

forall f ∈ instanceFields(c) do
let adr = fieldAdr(ref , f) and t = type(f) in
WRITEMEM(adr, t,defaultValue(t))

YIELD(ref)

exp. T ::M(args) → pos:= exp
�val. T ::M(args) → if StructValueInvocation(up(pos)) then

// create home for struct value
let adr = new(Adr, type(pos)) in
WRITEMEM(adr, type(pos), val)
values(pos) := adr

pos:= (args)
val. T ::M�(vals) → if InstanceCtor(M) ∧ TriggerInit(T) then

INITIALIZE (T)
elseif val �= null then
INVOKEINSTANCE(T ::M, val, vals)

ARRAYEXPO

A struct value invocation is a method invocation on a struct value which is not stored in
a variable. For such struct values the above rule creates a temporary storage area (called
“home”) to be passed in the invocation as value ofthis .

StructValueInvocation(exp. T ::M(args)) ⇐⇒
type(exp) ∈ StructType∧ exp /∈ Vexp

The rules for casting in TESTCASTEXPO use the new macro YIELDUPBOX defined below.
Note that in expressions ‘exp is t ’ and (t) exp the typet can be any type, whereas in
‘expas t ’ the typet must be a reference type. The type of ‘exp is t ’ is bool , while the

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 27

type of(t) expand ‘expas t ’ is t.

TESTCASTEXPO ≡
typeof(t) → YIELD(typeObj(t))

expis t → pos:= exp
�val is t → if type(pos) ∈ ValueTypethen

YIELDUP(type(pos)4t) // compile-time property
else
YIELDUP(val �= null ∧ runTimeType(val)4t)

expas t → pos:= exp
�val as t → if type(pos) ∈ ValueTypethen

YIELDUPBOX(type(pos), val) // box a copy of the value
elseif (val �= null ∧ runTimeType(val)4t) then
YIELDUP(val) // pass reference through

elseYIELDUP(null) // convert to null reference

(t) exp → pos:= exp
(t) �val → if type(pos) ∈ ValueTypethen

// compile-time identity
if t = type(pos) then YIELDUP(val)
// box value
if t ∈ RefTypethen YIELDUPBOX(type(pos), val)

if type(pos) ∈ RefTypethen
if t ∈ RefType∧ (val = null ∨ runTimeType(val)4t) then
YIELDUP(val) // pass reference through

if t ∈ ValueType∧ val �= null ∧ t = runTimeType(val) then
// un-box a copy of the value
YIELDUP(memValue(valueAdr(val), t))

The rules for instance field access and assignment in FIELDEXPO are analogous to those
for class variables, adding the evaluation of the instance, usingfieldAdr instead ofglobals,
and instead ofWRITEMEM themacro SETFIELD defined below. The second rule for instance
field access has to distinguish two cases, depending upon the statically known instance
type. Since this type information is already known at the time of static analysis, it could
be resolved by introducing two separate constructs for field access, as one of our referees
observed pointing also out that in fact the CLI has a single, overloaded instruction for field
access with overloading to be resolved by the JIT. However from the modeling point of
view, having two separate constructs for field access would lead to essentially the same two
rules we have formulated here, except for having as rule guard a matching condition for the
two constructs instead of the type test. We usetype(exp. t ::f) = type(t ::f).

FIELDEXPO ≡
exp. t ::f → pos:= exp
�val. t ::f → if type(pos) ∈ ValueType∧ val /∈ Adr then

YIELDUP(structField(val, type(pos), t ::f))
elseif val �= null then
YIELDUPINDIRECT(fieldAdr(val, t ::f))

28 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

exp1. t ::f = exp2 → pos:= exp1
�val. t ::f = exp → pos:= exp
val1. t ::f = �val2 → if val1 �= null then

SETFIELD(val1, t ::f, val2)
YIELDUP(val2)

C�O supports single dimensional as well as multi-dimensional arrays. Array types are read
from right to left. For example,int[][,] is the type of single-dimensional arrays of
two-dimensional arrays with elements of typeint . By dim(n) we denote a sequence of
n−1 commas, henceT [dim(n)] is the type ofn-dimensional arrays with elements of type
T. The length of theith dimension of ann-dimensional array represented by a reference
ref is stored as the value ofdimLength(ref , i). Note that the rules for using array indexing
expressions as rvalue respectively as lvalue appear together as subgroups of ARRAYEXPO ,
separated by pattern matching.

ARRAYEXPO ≡
new T [exp1, . . . , expn][R1] · · · [Rk] → pos:= exp1
new T [l1, . . . , �li , expi+1, . . . , expn][R1] · · · [Rk] → pos:= expi+1
new T [l1, . . . , �ln][R1] · · · [Rk] →

if ∀i ∈ [1 . . n] (0� li) then
let S = T [R1] · · · [Rk] in
let ref = new(Ref, [l1, . . . , ln], S) in

runTimeType(ref) := T [dim(n)][R1] · · · [Rk]
forall i ∈ [1 . . n] do dimLength(ref , i − 1) := li
forall � ∈ [0 . . l1− 1] × · · · × [0 . . ln − 1] do
WRITEMEM(elemAdr(ref , �), S,defaultValue(S))

YIELDUP(ref)

exp0[exp1, . . . , expn] → pos:= exp0
�ref [exp1, . . . , expn] → pos:= exp1
ref [i1, . . . , �ik, expk+1, . . . , expn] → pos:= expk+1
ref [i1, . . . , �in] →
if ref �= null ∧ ∀k ∈ [1 . . n] (0� ik < dimLength(ref , k − 1)) ∧
(RefOrOutArg(up(pos)) ∧ type(up(pos)) ∈ RefType→

elementType(runTimeType(ref)) = type(up(pos)))
then
YIELDUPINDIRECT(elemAdr(ref , (i1, . . . , in)))

exp0[exp1, . . . , expn] = exp → pos:= exp0
�ref [exp1, . . . , expn] = exp → pos:= exp1
ref [i1, . . . , �ik, expk+1, . . . , expn] = exp→ pos:= expk+1
ref [i1, . . . , �in] = exp → pos:= exp
ref [i1, . . . , in] = �val →
let T = elementT ype(runTimeType(ref)) in

if ref �= null ∧ ∀k ∈ [1 . . n] (0� ik < dimLength(ref , k − 1)) ∧
(type(pos) ∈ RefType→ runTimeType(val)4T)

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 29

then
WRITEMEM(elemAdr(ref , (i1, . . . , in)), T , val)
YIELDUP(val)

4.2.1. Refinement of macros
Invocation of instance methods splits into virtual and non-virtual calls. The function

lookupyields the classwhere the givenmethod specification is defined in the class hierarchy,
depending on the run-time type of the given reference.

INVOKEINSTANCE(T ::M, val, vals) ≡
if callKind(T ::M) = Virtual then // indirect call,val ∈ Ref

let S = lookup(runTimeType(val), T ::M) in
let this= if S ∈ StructTypethen valueAdr(val) elseval in
INVOKEMETHOD(S::M, [this] · vals)

if callKind(T ::M) = NonVirtual then // direct call,val ∈ Adr ∪ Ref
INVOKEMETHOD(T ::M, [val] · vals)

In C�O the notion of reading from the memory is refined by extending the simple equation
memValue(adr, t) = mem(adr) of C�I to fit also reference and struct types. This is done by
the following simultaneous recursive definition ofmemValueandgetFieldalong the given
struct type.

memValue(adr, t) =
if t ∈ SimpleType∪ RefTypethen mem(adr)
elseif t ∈ StructTypethen {f �→ getField(adr, f) | f ∈ instanceFields(t)}

getField(adr, t ::f) = memValue(fieldAdr(adr, t ::f), type(t ::f))

Writing to memory is refined recursively together with SETFIELD along the given struct
type:

WRITEMEM(adr, t, val) ≡
if t ∈ SimpleType∪ RefTypethen mem(adr) := val
elseif t ∈ StructTypethen

forall f ∈ instanceFields(t) do SETFIELD(adr, f, val(f))

SETFIELD(adr, t ::f, val) ≡WRITEMEM(fieldAdr(adr, t ::f), type(t ::f), val)

The notion ofAddressPosfrom C�C is refined to include also lvalue nodes ofStructType, so
that address positions are of the following form:ref �, out �,�++,�-- ,� op= exp,
�. f ,�. m(args) .

AddressPos(�) ⇐⇒ FirstChild(�) ∧
label(up(�)) ∈ {ref ,out ,++, -- } ∨ label(up(�)) ∈ Aop∨
(label(up(�)) = ’. ’ ∧ � ∈ Vexp∧ type(�) ∈ StructType)

YIELDUPBOX creates a box for a given value of a given type and returns its reference. The
run-time type of a reference to a boxed value of struct typet is defined to be (the value
type)t of the value. There is no need to introduce special reference types for boxed values.
If type(exp) is a value type that implements the interfaceI, thentype(exp)4I and the value

30 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

can be boxed using ‘(I) exp’ or ‘expas i’.

YIELDUPBOX(t, val) ≡ let ref = new(Ref) and adr = new(Adr, t) in
runTimeType(ref) := t

valueAdr(ref) := adr
WRITEMEM(adr, t, val)
YIELDUP(ref)

The struct value is copied in both cases, when it is boxed and when it is un-boxed.

4.2.2. ASM function new
We now justify in the context of the basic parallel execution mechanism of ASM rules

the sequentiality which is used in the following macros:

let adr = new(Adr, T) in P
let ref = new(Ref, T) in P
let ref = new(Ref, [l1, . . . , ln], T) in P
In the context of the machine EXECCSHARPthis comes up to specify an abstract memory
management. In factlet adr = new(Adr, T) in P stands for the sequential execution of
a new address allocation (which uses the ASM constructimport to provide a completely
fresh element) followed byP:

let adr = new(Adr, T) in P ≡ (import adr do ALLOCADR(adr, T)) seqP

where the operatorseqfor sequential execution of two ASMsM,N is to be understood as
defined for turboASMs in[14] (alternatively see[16, Chapter 4.1]), namely as binding into
one overall ASM step the two steps of first executingM in the given state and thenN in the
resulting state. Similarlylet ref = new(Ref, T) in P stands for the sequential execution
of address allocation for all instance fields of a given type followed byP:

let ref = new(Ref, T) in P ≡
import ref do

Ref(ref) := True
ALLOCFIELDS(ref , instanceFields(T))

seqP

Similarly, we define the address allocation for elements of ann-dimensional array:

let ref = new(Ref, [l1, . . . , ln], T) in P ≡
import ref do

Ref(ref) := True
forall � ∈ [0 . . l1− 1] × · · · × [0 . . ln − 1] do
import adr do

elemAdr(ref , �) := adr
ALLOCADR(adr, T)

seqP

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 31

The two macros for allocation of addresses and fields can be recursively defined as follows,
relying again upon the definition of recursive turbo ASMs in[10] (or see alternatively[16,
Chapter 4.1.2]):

ALLOCADR(adr, T) ≡
Adr(adr) := True
if T ∈ StructTypethen ALLOCFIELDS(adr, instanceFields(T))

ALLOCFIELDS(x, f s) ≡
forall f ∈ f s import adr do

fieldAdr(x, f) := adr
ALLOCADR(adr, type(f))

5. Refinement C�E of C�O by exception handling

In this section we extend C�O with the exception handling mechanism of C�, which sep-
arates normal program code from exception handling code. To this purpose exceptions are
represented as objects of predefined system exception classes or of user-defined application
exception classes. Once created (thrown), these objects trigger an abruption of the normal
program execution to catch the exception—in case it is compatible with one of the excep-
tion classes appearing in the program in an enclosing try–catch–finally statement. Optional
finally statements are guaranteed to be executed independently of whether the try statement
completes normally or is abrupted.

5.1. Static semantics ofC�E

For the refinement of EXECCSHARPO by exceptions, as in the previous section it suffices
to add the new rules for exception handling and to extend the static semantics. The set of
statements is extended by throw and try–catch–finally statements satisfying the following
constraints:

Stm ::= . . . | ‘ throw ’ Exp ‘ ; ’ | ‘ throw ’ ‘ ; ’
| ‘ try ’ Block{Catch} [‘catch ’ Block] [‘ finally ’ Block]

Catch ::= ‘catch ’ ‘ (’ ClassType[Loc] ‘) ’ Block

• every try–catch–finally statement contains at least onecatch clause, general catch clause
(i.e. of formcatch block), or finally block,

• no return statements are allowed in finally blocks,
• abreak , continue , orgoto statement is not allowed to jump out of a finally block,
• a throw statement without expression is only allowed in catch blocks,
• the exception classes in aCatchclause appear there in a non-decreasing type order, more
precisely, for every try–catch statement of the form.

try block catch (E1 x1) block1 . . . catch (En xn) blockn

the following holdsi < j �⇒ Ej �4Ei (andEi4System.Exception).

32 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

In our model the sets of abruptions and type states have to be extended by exceptions. Due
to the presence ofthrow statements without expression, a stack of references is needed to
record exceptions which are to be re-thrown.

Abr = . . . | Exc(Ref), TypeState= . . . | Exc(Ref), excStack: List(Ref)

To simplify the expositionwe assume that general catch clauses ‘catch block’are replaced
at compile-timeby ‘catch (Object x) block’withanewvariablex.Wealso reduce try–
catch–finally statements to try–catch and try–finally statements as follows. Both reductions
can easily be shown to correctly express the ECMA specification:

try TryBlock
catch (E1 x1) CatchBlock1
...

catch (En xn) CatchBlockn
finally FinallyBlock

�⇒

try {
try TryBlock
catch (E1 x1) CatchBlock1
...

catch (En xn) CatchBlockn
} finally FinallyBlock

If a static constructor throws an exception, and no catch clauses exists to catch it, then
this exception is wrapped into aTypeInitializationException by translating
static T () { BlockStatements} into

static T () {
try { BlockStatements}
catch (Exception e) {
throw new TypeInitializationException(T , e);

}
}

The reachability rules and the definite assignment constraints for a try–catchstm≡ try
tryBlock catch (E1 x1) catchBlock1 . . . catch (En xn) catchBlockn are:
• If reachable(stm), thenreachable(tryBlock) andreachable(catchBlocki) for every i ∈
[1 . . n].

• If normal(tryBlock) or normal(catchBlock) for at least onei ∈ [1 . . n], then
normal(stm).

• before(tryBlock) = before(stm).
• before(catchBlocki) = before(stm) ∪ {xi} for everyi ∈ [1 . . n].
• after(stm) = after(tryBlock) ∩⋂n

i=1 after(catchBlocki).
For a statementstmof the formtry tryBlock finally finallyBlock the rules and con-
straints are:
• If reachable(stm), thenreachable(tryBlock) andreachable(finallyBlock).
• If normal(tryBlock) andnormal(finallyBlock), thennormal(stm).
• before(tryBlock) = before(stm).
• before(finallyBlock) = before(stm).
• after(stm) = after(tryBlock) ∪ after(finallyBlock).

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 33

5.2. Dynamic semantics forC�E

The transition rules for EXECCSHARPE are defined by adding two submachines to
EXECCSHARPO . The first one provides the rules for handling the exceptions which may
occur during the evaluation of expressions, the second one describes the meaning of the
new throw and try–catch–finally statements.

EXECCSHARPE ≡
EXECCSHARPO
EXECCSHARPEXPE
EXECCSHARPSTME

5.2.1. Expression evaluation rules
EXECCSHARPEXPE contains rules for each of the numerous forms of run-time exceptions

defined in the subclasses ofSystem.Exception . We give here seven characteristic
examples and group them for the ease of presentation into parallel submachines by the form
of expression they are related to, namely for arithmetical exceptions and for those related
to cast expressions, reference expressions or array expressions. The notion of FAILUP we
use is supposed to execute the codethrow new E() at the parent position, so that we
define the macro by invoking an internal methodThrow E with that effect for each of the
exception classesE used as parameter of FAILUP.

EXECCSHARPEXPE ≡ match context(pos)
uop�val → if Checked(pos) ∧ Overflow(uop, val) then

FAILUP(OverflowException)

val1 bop �val2 → if DivisionByZero(bop, val2) then
FAILUP(DivideByZeroException)

elseif DecimalOverflow(bop, val1, val2)∨
(Checked(pos) ∧ Overflow(bop, val1, val2))

then FAILUP(OverflowException)

CASTEXCEPTIONS
NULLREFEXCEPTIONS
ARRAYEXCEPTIONS

FAILUP(E) ≡ INVOKEMETHOD(ExcSupport::Throw E, [])
CASTEXCEPTIONS≡ match context(pos)
(t) �val →
if type(pos) ∈ RefTypethen

if t ∈ RefType∧ val �= Null ∧ runTimeType(val) �4t then
FAILUP(InvalidCastException)

if t ∈ ValueTypethen // attempt to unbox
if val = Null then FAILUP(NullReferenceException)

elseif t �= runTimeType(val) then
FAILUP(InvalidCastException)

if type(pos) ∈ NumericType∧ t ∈ NumericType∧ Checked(pos) ∧

34 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Overflow(t, val)
then FAILUP(OverflowException)

The semantics of assignments as defined by the ECMA standard and formalized by the rule
NULLREFEXCEPTIONSis violated by a compiler optimization in[39] related to the timing
of theNull check for certain expressions, see the analysis in[20].

NULLREFEXCEPTIONS≡ match context(pos)
�ref . t ::f → if ref = Null then

FAILUP(NullReferenceException)
ref . t ::f = �val → if ref = Null then

FAILUP(NullReferenceException)
ref . T ::M(�vals) → if ref = Null then

FAILUP(NullReferenceException)

If the address of an array element is passed as aref or out argument to a method,
then the run-time element type of the array must beequal to the parameter type that the
method expects. If an object is assigned to an array element, then the type of the object
must be asubtypeof run-time element type of the array (array covariance problem). In
both cases, if the condition is not satisfied, anArrayTypeMismatchException is
thrown.

ARRAYEXCEPTIONS≡ match context(pos)
new T [l1, . . . , �ln][R1] · · · [Rk] →
if ∃i ∈ [1 . . n] (li < 0) then FAILUP(OverflowException)

ref [i1, . . . , �in] →
if ref = Null then FAILUP(NullReferenceException)

elseif ∃k ∈ [1 . . n] (ik < 0∨ dimLength(ref , k − 1)� ik) then
FAILUP(IndexOutOfRangeException)

elseif RefOrOutArg(up(pos)) ∧ type(up(pos)) ∈ RefType∧
elementType(runTimeType(ref)) �= type(up(pos))

then FAILUP(ArrayTypeMismatchException)

ref [i1, . . . , in] = �val →
if ref = Null then FAILUP(NullReferenceException)

elseif ∃k ∈ [1 . . n] (ik < 0∨ dimLength(ref , k − 1)� ik) then
FAILUP(IndexOutOfRangeException)

elseif type(pos) ∈ RefType∧
runTimeType(val) �4elementType(runTimeType(ref)) then
FAILUP(ArrayTypeMismatchException)

5.2.2. Statement execution rules
The statement execution submachine splits naturally into submachines for throw, try–

catch, try–finally statements and a rule for the propagation of an exception (from the
root position of a method body) to the method caller. To support a correct understand-
ing of the exception messages that are printed to the console we include into the rule for
throw statements the initialization of stack traces. The initialization of stack traces in Java

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 35

and C� is different. In Java, the stack trace is initialized with the complete trace up to
the main function once and for all when the exception object is created. In C� the stack
trace is initialized with the empty trace each time when the exception object is thrown
with throw and then augmented whenever the exception is propagated to a parent frame.
The semantics of the parameterlessthrow; instruction is explained in terms of the ex-
ception StackexcStack. When an exception is caught, it is pushed on top of the excep-
tion stack (which as explained above is needed to record exceptions which are to be re-
thrown). Whenever a catch block terminates (normally or abruptly) the topmost element
of the exception stack is deleted. No special rules are needed for general catch clauses
‘catch block’ in try–catch statements, due to their compile-time transformation men-
tioned above. The completeness of the try–finally rules is due to the constraints listed above,
which restrict the possibilities for exiting a finally block to normal completion or triggering
an exception.

EXECCSHARPSTME ≡ match context(pos)
throw exp; → pos:= exp
throw �ref ; → if ref = Null then FAILUP(NullReferenceException)

elseINITSTACKTRACE(ref ,meth)
YIELDUP(Exc(ref))

throw; → YIELD(Exc(top(excStack)))

try block catch (E x) stm . . . → pos:= block
try �Normcatch (E x) stm . . . →YIELDUP(Norm)
try �Exc(ref) catch(E1 x1) stm1 . . . catch(En xn) stmn →
if ∃i ∈ [1 . . n] runTimeType(ref)4Ei then
let j = min{i ∈ [1 . . n] | runTimeType(ref)4Ei} in

pos:= stmj
excStack:= push(ref ,excStack)
WRITEMEM(locals(xj),object , ref)

elseYIELDUP(Exc(ref))
try �abr catch(E1 x1) stm1 . . . catch(En xn) stmn → YIELDUP(abr)
try Exc(ref) . . . catch(. . .) �res . . .→
{excStack:= pop(excStack), YIELDUP(res)}

try tryBlock finally finallyBlock → pos:= tryBlock
try �res finally finallyBlock → pos:= finallyBlock
try res finally �Norm →YIELDUP(res)
try res finally �Exc(ref) →YIELDUP(Exc(ref))

Exc(ref)→ if pos= body(meth) ∧ ¬Empty(frames) then
if StaticCtor(meth) then typeState(type(meth)) := Exc(ref)
elseAPPENDSTACKTRACE(ref ,meth(top(frames)))
EXITMETHOD(Exc(ref))

In case an exception happened in the static constructor of a type, its type state is set to
that exception to prevent its re-initialization and instead to re-throw the old exception
object. The refinement of the macro INITIALIZE defined in C�C re-throws the exception

36 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

object of a type which had an exception in the static constructor, thus preventing its
re-initialization.20

INITIALIZE (c) ≡
. . .

if typeState(c) = Exc(ref) then YIELD(Exc(ref))

6. Refinement C�D of C�E by delegates

In this section we extendC�E by features which distinguish C� from other languages, e.g.
Java.We start with delegates and then add further constructswhose semantics can be defined
mainly by reducing them via syntactical translations to the language model developed so
far: properties, indexers, overloaded operators, enumerators with theforeach statement,
theusing statement, events and attributes. We use the model developed so far as ground
model (in the sense of[8]) for C�, thus providing a basis to justify the correctness (with
respect to the ECMA standard[27]) of the “semantics of syntactic sugar” introduced in this
section to define the semantics for delegates, properties, etc.

6.1. Delegates

Delegate types in C� are reference types that encapsulate a static or instancemethod with
a specific signature, with the intention of having delegates playing the role of type-safe
function pointers. A delegate typeD is declared as follows:

delegate T D(S1 x1, . . . , Sn xn);

It represents the type of methods that taken arguments of typeS1, . . . , Sn and have re-
turn typeT. Delegate types appear as subtypes ofSystem.Delegate and provide in
particular thecallbackfunctionality and asynchronous event handling. More precisely, the
characteristic ability of delegates is to call a list of multiple methods sequentially. This
feature is realized by means of aninvocationList:Ref → Delegate∗ ∪ {Undef} with which
each delegate instance is equipped upon its creation. Each such list is a per instance im-
mutable, non-empty, ordered list of static methods or pairs of target objects and instance
methods. Upon invocation of a delegate instance with argumentsargs, the methods of its
invocation list are called one after the other with these argumentsargs, returning to the caller
of the delegate either thereturn valueof the last list element or the firstexceptiona list
element has thrown during its execution, preventing the remaining list elements from being
invoked.
Therefore we introduce a new universeDelegate= Meth∪ (Ref×Meth). To express the

creation and use of new delegate expressions the setsExp,Sexpare extended by additional

20For modeling the implementation flagbeforefieldinitmentioned above this implies, as observed in[20], to
refine also the predicateTriggerInit, used for invoking static or instance methods, namely to guarantee for a class
in exception state its initialization even if the class is markedbeforefieldinit: TriggerInit(c) = (¬Initialized(c) ∧
¬beforefieldinit(c)) ∨ typeState(c) = Exc(ref).

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 37

grammar rules as follows, using a new setDexpof delegate expressions:

Sexp ::= . . . | Exp ([Args])
Exp ::= . . . | ‘new’ DelegateType‘ (’ Dexp‘) ’
Dexp ::= Meth | Type‘ . ’ Meth | Exp ‘ . ’ Meth | Exp

AmethodT ::M is calledcompatiblewith the delegate typeD iff T ::M andD have the same
return type and the same number of parameters with the same parameter types (including
ref , out , params modifiers). The type constraints on the new expressions are spelt out
in [12].
We use themodel EXECCSHARPSTMI , which includes a description of thefor statement

of C�I , to express the sequentiality of the execution of delegate invocation list elements. In
fact the above delegate declaration can be translated forT �= void in the following class:

sealed class D : System.Delegate {
public T Invoke(S1 x1, . . . , Sn xn) {
T result;
for (int i = 0; i < this ._length() ; i++)
result = this._invoke(i, x1, . . . , xn);

return result;
}
private extern int _length();
private extern T _invoke(int i, S1 x1, . . . , Sn xn);

}

A delegate invocation expressionexp(args) can be syntactically translated into a normal
method callexp. D::Invoke(args) whereD is the type ofexp. 21 It then suffices to refine
the ASM rule INVOKEEXTERN defined in the model EXECCSHARPEXPC to describe the
meaning of the methodD::_invoke , which is to invoke theith element of the invocation
list on the given arguments, and analogously of_length .

INVOKEEXTERN(T ::M, vals) ≡
if T ∈ DelegateTypethen

if name(M) = _length then
DELEGATELENGTH(vals|(0))

if name(M) = _invoke then
INVOKEDELEGATE(vals(0), vals(1),drop(vals,2))

DELEGATELENGTH(ref) ≡
YIELDUP(length(invocationList(ref)))

INVOKEDELEGATE(ref , i, vals) ≡
match invocationList(ref)(i)

21 In [27, Section 10.4.7]the members of a delegate are defined to be the members inherited from the class
System.Delegate . However neither .NET nor Rotor nor Mono do respect this stipulation since they add
further methods to those inherited. One such example is the method_invoke we use here.

38 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

T ::M → INVOKESTATIC(T ::M, vals)
(target, T ::M) → INVOKEINSTANCE(T ::M, target, vals)

Since there are no new statements appearing in C�D, the addition of the rule EXECCSHARPD
to EXECCSHARPE consists in the followingASMsubrule EXECCSHARPEXPD, which defines
the meaning of delegate instance creation. For a detailed analysis of the discrepancy we
exhibit here between the ECMA standard and the .NET implementation see[20].

EXECCSHARPEXPD ≡ match context(pos)
new D(T ::M) →
let d = new(Ref,D) in

runTimeType(d) := D

invocationList(d) := [T ::M]
YIELD(d)

new D(exp. T ::M) → pos:= exp
new D(�ref . T ::M) →
if ref = Null then FAILUP(NullReferenceException)

else letd = new(Ref,D) in
runTimeType(d) := D

invocationList(d) := [(ref , T ::M)]
YIELDUP(d)

new D(exp) → pos:= exp
new D(�ref) →
if ref = Null then FAILUP(NullReferenceException)

else letd = new(Ref,D) in
runTimeType(d) := D

invocationList(d) := invocationList(ref) // ECMA §14.5.10.3
// Microsoft .NET Framework:
// invocationList(d) := [(ref ,D::Invoke)]
YIELDUP(d)

To be complete, one should add some rules which reflect the special character of delegate
invocation lists. As usual for lists, two invocation lists areequal(==) iff they have the same
length and the elements of the lists are pairwise equal; they can becombined(concatenated
with ‘+’) and sublists determined by a particular prefix and suffix condition can beremoved
from them (with ‘- ’). To describe this specialization of list operations in our model it
suffices to refine the macro INVOKEEXTERN by new rules for these operatorsoperator+ ,
operator- , operator== .

INVOKEEXTERN(T ::M, vals) ≡
. . .

if T ∈ DelegateTypethen
if name(M) = operator+ then
DELEGATECOMBINE(T , vals(0), vals(1))

if name(M) = operator- then
DELEGATEREMOVE(T , vals(0), vals(1))

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 39

if name(M) = operator== then
DELEGATEEQUAL(vals(0), vals(1))

Since invocation lists are considered to be immutable, combination and removal returnnew
delegate instances unless one of the arguments isnull . Thenull reference represents a
delegate instance with an empty invocation list.

DELEGATECOMBINE(D, r1, r2) ≡
if r1 = Null then YIELDUP(r2)
elseif r2 = Null then YIELDUP(r1)
else letd = new(Ref,D) in

runTimeType(d) := D

invocationList(d) := invocationList(r1) · invocationList(r2)
YIELDUP(d)

DELEGATEREMOVE(D, r1, r2) ≡
if r1 = Null then YIELDUP(Null)
elseif r2 = Null then YIELDUP(r1)
else letl1 = invocationList(r1) and l2 = invocationList(r2) in

if l1 = l2 then YIELDUP(Null)
elseif Subword(l2, l1) then let d = new(Ref,D) in

runTimeType(d) := D

invocationList(d) := prefix(l2, l1) · suffix(l2, l1)
YIELDUP(d)

elseYIELDUP(r1)

The notions ofprefixandsuffixare defined here in terms of thelastoccurrence of a subword:
prefix(u, v) is the part ofv before the last occurrence ofu in v andsuffix(u, v) the part of
v after the last occurrence ofu in v.

DELEGATEEQUAL(r1, r2) ≡
if r1 = Null ∨ r2 = Null then YIELDUP(r1 = r2)

else letl1 = invocationList(r1) and l2 = invocationList(r2) in
YIELDUP(length(l1) = length(l2) ∧ ∀i < length(l1) (l1(i) = l2(i)))

6.2. Properties, events and further features inC�D

In this section we add further language features of C� whose semantics can be easily
defined in terms of the model developed so far, essentially by simple syntactical reductions
which one can easily justify to formalize correctly the explanations in[27].

6.2.1. Properties
Collections of a read and/or a write method for attributes of a class or struct are called

propertiesin C� and declared in the following form (we skip the modifiers):

Type Identifier‘ { ’ [‘get ’ Block] [‘set ’ Block] ‘ } ’

40 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

By definition aread–writeproperty has aget and aset accessor, aread-onlyproperty
has only aget accessor, awrite-onlyproperty has only aset accessor. The identifier of
a propertyP of typeT can be used like a field identifier,22 except that it cannot be passed
as ref or out argument. Furthermore, it is required that the body of aget accessor
is the body of a method with return typeT, that aset accessor has a value parameter
namedvalue of type T and that its body is the body of avoid method. Using the
signaturesT get_ P (); andvoid set_ P (T value); , which are reserved for get and
set accessors, the intended semantics of properties is reduced to the semantics of methods,
using the following syntactical reductions:

T P {
get { getAccessor}
set { setAccessor}

}

�⇒
T get_ P () { getAccessor}
void set_ P (T value) {

setAccessor
}

exp. P �⇒ exp.get_ P () exp1. P = exp2; �⇒ exp1.set_ P (exp2);

The above translation comprises also expressions of the formexp1. P op= exp2, because
we can assume that these compound assignments are compiled to〈x = exp1, y = x.
get_P() op exp2, x.set_P(y) , y〉 with fresh local variablesx, y, using as auxiliary
operator the comma operator familiar from C/C++. This necessitates auxiliary rules for
going through sequences of expressions of the following form:

〈exp, . . .〉 → pos:= exp
〈val1, . . . , �valn〉 →YIELDUP(valn)
〈. . .�val, exp. . .〉 → pos:= exp

6.2.2. Indexers
Indexers can be used like array elements except that they cannot containref or out

parameters and their elements cannot bepassedasref orout arguments.Theyare declared
in a class or struct type as follows (we skip the modifiers):

Type‘ this ’ ‘ [’ [Params] ‘] ’ ‘ { ’ [‘get ’ Block] [‘set ’ Block] ‘ } ’

Analogously to the constraints for properties, for an indexer of typeTwith parametersp, the
body of aget accessor is the body of amethodwith parameterspand return typeT, the body
of aset accessor is the body of avoid methodwith parameterspand an implicit value pa-
rameter namedvalue of typeT.A base class indexer can be accessed bybase[exps] . Us-
ing the signaturesT get_Item(params) andvoid set_Item(params, T value) ,
which are reserved for get and set accessors, the intended semantics of indexers is re-
duced to the semantics of arrays and methods via the following compile-time transla-
tion (and corresponding operator expression translation as explained

22Without knowing whether it is accessed directly or whether an accessor method is being called.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 41

for properties):

T this[params] {
get { getAccessor}
set { setAccessor}

}

�⇒
T get_Item(params) { getAccessor}
void set_Item(params, T value) {

setAccessor
}

Events. Events can be declared in C� like fields as follows: in the form ‘event ’
DelegateType Identifier‘ ; ’ (we omit the modifiers), or like properties, in the form

‘event ’ DelegateType Identifier‘ { ’ ‘ add ’ Block ‘ remove ’ Block ‘ } ’.

Outside the type that contains the declaration, an eventX can only be used as the left-hand
operand of+= and-= in expressionsX += expandX -= expof typevoid ; within the
type that contains the declaration, field-like events can be used like fields of delegate types.
The accessors of property-like events have to be bodies ofvoid methods with an implicit
parametervalue of DelegateType.
The semantics of events in C� follows thePublish/Subscribepattern. A class publishes

an event it can raise, so that any number of classes can subscribe to that event. When the
event is actually raised, each subscriber is notified that the event has occurred, namely by
calling a delegate whose invocation list is executed with the sender object and the event
data as its arguments. This idea is realized as follows. Theevent senderclass that raises
an event namedX has the memberevent X_EventHandler X; where the delegate
typeX_EventHandler for the event is declared as follows (with two arguments, the first
one for the publisher and the second one for the event information object, which must be
derived from the classEventArgs):

delegate void X_EventHandler(object sender, X_EventArgs e);

To consume the event, theevent receiverdeclares an event-handling methodReceive_ X

with the same signature as the event delegate:

void Receive_ X(object sender, X_EventArgs e) { . . . }

To registerthe event handler, the event receiver has to add theReceive_ X method to the
eventX of the event sender object:

X += new X_EventHandler(this.Receive_ X);

The event senderraisesthe event by invoking the invocation list ofXwith the sender object
and the event data, e.g.

void On_ X(X_EventArgs e) { if (X != null) X(this, e); }

It suffices to assign a meaning to the signaturesvoid add_ X(D value) andvoid
remove_ X(D value) , which are reserved for every eventX of delegate typeD. This
is done by the following translation of field-like events, anticipating thelock statement

42 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

of C�T which is explained in[35]. 23

class C {
private D _ _X;
void add_ X(D value) {
lock (this) { _ _ X = _ _X + value; }

}
void remove_ X(D value) {
lock (this) { _ _ X = _ _X - value; }

}
}

6.2.3. Further constructs
Similar syntactical reductions to those given above can be used to define the semantics

of overloaded standard mathematical operators and user-defined conversions, of enumer-
ation related statements ‘foreach (T x in exp) stm’, of using statements ‘using
(resource) stm’, of parameter arrays and of attributes.

7. Refinement C�U by pointers in unsafe code

In this section we add the features C� offers for using pointers (coming with address-
of and dereferencing operators ‘&’, ‘ * ’, ‘ -> ’ together with pointer arithmetic) to directly
work on memory addresses, bypassing the type checking by the compiler—hence the name
‘unsafe ’ code blocks. Java has no such unsafe extension. The extension includes a mech-
anism calledpinningof objects to prevent the runtime during the execution of a ‘fixed ’
statement to manage via the garbage collector memory one wants to address directly. Code
for which (de-) allocation is not controlled by the runtime is calledunmanaged. As an al-
ternative to pinning, data of unmanaged type can also be ‘stackalloc ’ated, instead of
using the heap.
The refinement consists, besides some new rules, mainly in a definition of thememory

function in terms of byte sequences. This is a typical data refinement, using an encoding of
simple types and a corresponding refinement of the functionstructField.

7.1. Signature refinement forC�U

We refineTypeby adding pointer types to value and reference types:

Type ::= ValueType| RefType| PointerType
PointerType::= UnmanagedType‘* ’ | ‘void ’ ‘ * ’

whereunmanagedtypes are types which are not managed andmanagedtypes are recur-
sively defined as (a) reference types or (b) struct types that contain a field of amanaged type

23 If one prefers to be independent of the thread model C�T , one can consider lock statementslock (exp) stm
translated for single-thread execution by{ Object o = exp; stm } (with a fresh variableo), which is then
refined in C�T for the multiple thread execution model.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 43

Table 6
Type constraints for unsafe expressions

Expression Constraints Expression type

sizeof(t) t unmanaged type int
* e type(e) = T * , T �= void T

&v v a fixed variable T * , whereT = type(v)
e -> m type(e) = T * , T �= void type(T ::m)
e[i] type(e) = T * , T �= void , type(i) integral T

or a pointer to a managed type. The subtype relation is extended to pointer types such that
�4T *4void* . ExpandVexpare extended by address-of and dereferencing expressions
and expressions to denote the values of a new function indicating the ‘sizeof ’ unman-
aged types.Stm is extended to reflect ‘unsafe ’ code blocks, ‘fixed ’ statements and
‘stackalloc ’ation of arrays. ‘unsafe ’ can also appear as modifier for classes, structs,
interfaces, delegates as well as for fields, methods, properties, indexers, operators, events,
constructors, destructors.

Exp ::= . . . | ‘&’ Vexp| Exp ‘ -> ’ Meth ([Args]) | Exp ‘ -> ’ Field
| ‘sizeof ’ ‘ (’ UnmanagedType‘) ’

Vexp ::= . . . | ‘* ’ Exp

Stm ::= . . . | ‘unsafe ’ Block | ‘ fixed ’ ‘ (’ PointerType Loc= Exp ‘) ’ Stm

Bstm ::= . . . | PointerType Loc‘=’
‘stackalloc ’ UnmanagedType‘ [’ Exp ‘] ’ ‘ ; ’

In the following expressions, the basic arithmetical operators are used for pointer increment
anddecrement, pointer additionandsubtraction, pointer comparison, andpointer conversion
(wherep andq are of a pointer type,i is of integer type):
• ++p, -- p, p++, p-- , p + i, i + p, p - i, p - q, p == q, p != q, p < q, p <= q,
p > q, p >= q

• (T *) i, (T *) p, (int) p, (uint) p, (long) p, (ulong) p

On the types of the new expressions the constraints in Table6 are imposed. We assume the
dereferencing and member access operatore-> m to be translated to(* e). m, similarly
e[i] to *(e + i) .
For statements the following type constraints in Table7are assumed.A variable is called

moveable(by the garbage collector) iff it is not a fixed variable. Fixed variables are (by
recursive definition): local variables, value parameters,* exp for expof pointer type, and
instance field expressionsv. f if v is a fixed variable of struct typeT andf is an instance
field ofT.
The local variablep in the fixed statement is called apinned local variable. A pinned

local variable is a read-only variable. It is not allowed to assign a new value to it in the body
of the fixed statement.
The principal refinement in the ASM extension EXECCSHARPU for C�U is that of the

memory together with its operators, where the set ofSimpleValues is replaced byBytes

44 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Table 7
Type constraints for unsafe statements

Statement Constraints

T * p = stackalloc T [exp]; type(exp) = int , T unmanaged
fixed (char* p = exp) stm type(exp) = string , p read-only instm
fixed (T * p = exp) stm type(exp) = T [R] , T unmanaged,

p read-only instm
fixed (T * p = &vexp) stm type(vexp) = T , T unmanaged,

vexpa moveable variable,
p read-only instm

(8-bit strings), using non-negative integers as memory addresses (Adr = N):

mem:Adr → Byte∪ Ref∪ {Undef}
The partial functions toencode(resp.decode) values of a given simple typeT by byte
sequences, of a length (number of bytes) depending onsizeOf(T), satisfy for valuesval the
equations

decode(T ,encode(val)) = val and length(encode(val)) = sizeOf(T).

For every pointer typeT * holdssizeOf(T *) = sizeOf(void*).
A functionfieldOffset:UnmanagedStructType×Field → N is used to describe the layout

of unmanaged structs. It has to satisfy the following constraint for every unmanaged struct
typeT and instance fieldf of T (overlapping fields are allowed in C�U):

fieldOffset(T , f)+ sizeOf(type(f))�sizeOf(T)

We assume that ifadr is an address allocated usingnew(Adr, T) for struct typeT, then for
every instance fieldf of T the equationfieldAdr(adr, f) = adr + fieldOffset(T , f) holds.
Todetermine the layout of arrayswith unmanagedelement typewestipulate the following

refinement of the functionelemAdrwhich reflects that array elements are stored such that
the indices of the right most dimension are increased first, then the next left dimension,
and so on. ForrunTimeType(ref) = T [dim(n)] , whereT is an unmanaged type andli =
dimLength(ref , i − 1) for i ∈ [1 . . n], we assume the following:
elemAdr(ref , [i1, i2, . . . , in]) =

elemAdr(ref , [0, . . . ,0])+ (. . . (i1 · l2+ i2) · l3+ . . .+ in) · sizeOf(T)

7.2. Transition rule refinement for unsafe code

Besides the rulesbelowwhichdefine thesemantics of thenewexpressionsandstatements,
to be added toEXECCSHARPD, we have to data refine the notions of reading fromandwriting
to memory for values of unmanaged type.

memValue(adr, t) =
if t ∈ RefTypethen mem(adr)

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 45

elseif t ∈ UnmanagedTypethen
[mem(adr + i) | i ∈ [0 . . sizeOf(t)− 1]]

elseif t ∈ StructTypethen
{f �→ getField(adr, f) | f ∈ instanceFields(t)}

getField(adr, t ::f) = memValue(fieldAdr(adr, t ::f), type(t ::f))

WRITEMEM(adr, t, val) ≡
if t ∈ RefTypethen mem(adr) := val
elseif t ∈ UnmanagedTypethen

forall i ∈ [0 . . sizeOf(t)− 1] do mem(adr + i) := val(i)
elseif t ∈ StructTypethen

forall f ∈ instanceFields(t) do SETFIELD(adr, f, val(f))

SETFIELD(adr, t ::f, val) ≡WRITEMEM(fieldAdr(adr, t ::f), type(t ::f), val)

Values of unmanaged struct types are directly represented as sequences of bytes. Hence, the
functionstructFieldhas to be refined to extract a subsequence in case of unmanaged struct
types:

structField(val, T , f) =
if T ∈ ManagedTypethen val(f)
else letn = fieldOffset(T , f) in [val(i) | n� i < n+ sizeOf(type(f))]

In the rules for EXECCSHARPEXPU we have&� as additional address position. We follow
the implementation in Rotor and .NET in formulating theNull check to prevent writing to
null addresses; the ECMA standard describes this check as optional.

EXECCSHARPEXPU ≡ match context(pos)
sizeof(T) → YIELD(sizeOf(T))

&exp → pos:= exp
&�adr →YIELDUP(adr)

* exp → pos:= exp
* �adr → if adr = Null then // null pointer check optional

FAILUP(NullReferenceException)

elseYIELDUPINDIRECT(adr)

* exp1 = exp2 → pos:= exp1
* �adr = exp2 → pos:= exp2
* adr = �val → if adr = Null then // null pointer check optional

FAILUP(NullReferenceException)

else
WRITEMEM(adr, type(pos), val)
YIELDUP(val)

The rules for pointer arithmetic can be summarized as follows:

Apply(+(T * , int),adr, i) = adr + i · sizeOf(T)
Apply(+(int , T *), i,adr) = adr + i · sizeOf(T)
Apply(- (T * , T *),adr1,adr2) = (adr1− adr2)/sizeOf(T)

46 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

Convert(T * ,adr) = adr = Convert(S,adr)
for S ∈ {int , uint , long , ulong }

Convert(T * , i) = i

In the execution of the stackalloc statement we assume thatnew(adr, T , i) allocatesi con-
secutive chunks of addresses of sizesizeOf(T) which are later de-allocated on method exit
in FREELOCALS.

EXECCSHARPSTMU ≡ match context(pos)
unsafe block → pos:= block
unsafe �Norm →YIELDUP(Norm)

T * loc = stackalloc T [exp]; → pos:= exp
T * loc = stackalloc T [�i]; → let adr = new(Adr, T , i) in

WRITEMEM(locals(loc), T * ,adr)
YIELDUP(Norm)

The run-time execution of fixed statements can be explained by syntactical transformations:

Statement Run-time execution

fixed (char* p = exp) stm{ char* p; p = Cstring(exp); stm}

fixed (T * p = exp) stm { T * p; p = &exp[0]; stm}

fixed (T * p = &vexp) stm { T * p; p = &vexp; stm}

In the first case, it is assumed thatCstring(s) is an internal function that returns the address
of the first element of a C-style null-terminated character array representation of the string
s. How it is related to the original representation of the string is not specified in[27].

8. Related work and conclusion

One of our referees would like to see a critical assessment of the ASM method we used
for this work and a comparison to alternative approaches. Some justification of the kind
from the perspective of semantic methods for programming languages has been given in[6,
Section 4], containing concrete illustrations of and references to the numerous and earlier
competing proposals. This was at a time when ASMs were applied for the first time to
(successfully) specify an industrial language standard, namely the ISO Prolog standard
[11]. A decade later, a broader comparison of the then well-developed ASM method with
respect to other systemdesignandanalysis frameworkshasbeenprovided in[5,7].However,
a systematic, comprehensive and authoritative evaluation of the multitude of system design
and analysis proposals in the literature remains a highly desirable and challenging task
to be accomplished, even if limited to the use of the major so-called formal methods for
the development and investigation of programming languages and their implementations.
From the perspective of practical system design and analysis some comparative studies of

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 47

this kind have been published, see e.g.[1,17,28](the interested reader may also consult
the corresponding ASM-based work in[4,13,26]). For work centered around Java and
the JVM the reader finds in[2] a collection of formal-method approaches to language
specification and analysis;[24] contains an excellent, detailed and at the time complete
review of the huge literature on the subject (including an evaluation of the ASM-based
Java/JVM investigations), with a focus on safety issues and their impact on smart cards.
We cannot perform here a similar analysis for work on C� or other major programming
languages. This explains why the references in this paper stick to C� documentation from
ECMA and Microsoft and to some ASM work we have built upon directly.
For theworkpresented in thispaperwesetourselvesamoremodest thoughnot completely

trivialmajor goal, namely to test whether themethod developed in[36] for the definition and
a proven to be correct implementation of a real-life programming language like Java scales
naturally to the somewhat richer andmore complexC�. It is up to the reader to judgewhether
thisASM reuse case study for a real-life complexmodel succeeded. For the formalization of
other programming languages something can also be learnt directly from the formalization
of the semantics of C�worked out here. For example, how to “divide and conquer” the static
and the dynamic semantics of a language, how to separate the description of conceptually
independent programming constructs by dividing them into sublanguages, how to unify
and streamline the formalization of similar constructs by appropriate parameterizations
(which means abstractions), how to model and evaluate variations of specific features (e.g.
expression evaluation, parameter passing mechanism, class initialization, etc.) by varying
macros, rules and/or domains together with their operations, how to extend within a single
framework themodel for a language core by a form of bootstrapping (including in particular
syntactical translations) to a model for the entire language, etc.
There are several by-products of the work presented here. Through the ASM-model-

oriented analysis of the ECMA standard for C� we found several bugs and gaps in the
formulation of the standard and in its .NET implementation as well as some incoherences
between the two, as documented in detail in[20] in terms of ourASMmodel for C�.Another
by-product of the high-level modular interpreter defined here is the support it provides to
teachers of C�, in particular if they want to shed light on certain subtle language features
which are not clarified by theECMAdocuments. In the forthcoming paper[15]we are going
to work out a concrete comparison of the two models for C� and for Java, which will allow
us to formulate in a precise technical manner where and in which respect the two languages
differ among each other and from other programming languages—methodologically, se-
mantically and pragmatically. As a specific part of this reuse-case-study the second author
is investigating how the main new features of C� 2.0 can be modeled by appropriate ex-
tensions of the ASM model developed here for C�, in particular generic types (parametric
polymorphism), anonymous methods and iterators. Last but not least, with our C� model
and its extension to threads in[35] we have laid the ground for a mathematical analysis
and possibly mechanical verification of interesting properties of the language and its im-
plementation, like type safety,24 compiler correctness and completeness, correctness of

24For a fragment of Microsoft’s Intermediate Language, which is executed by Microsoft’s Common Language
Runtime, a type safety proof has been given in[23], based upon Syme’s method[38] for writing functional
specifications which can be subject to theorem proving in HOL.

48 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

(a mathematical model to be developed for) garbage collection, security, etc. For the cor-
rectness of the definite assignment analysis performed by a C� compiler, we may refer the
interested reader to[21]. We hope somebody will feel challenged to use our model for pre-
cisely formulating and proving such theorems for C� and to build a corresponding model
for Microsoft’s Common Language Runtime together with a compilation scheme from C�

to IL code, applying to our model the powerful ASM refinement technique[9] along the
lines shown in the ASM-based Java/JVM study in[36].
The questions asked by our referees lead us to mention another practical and industrially

viable use that can be made of a modeling and analysis activity as the one reported in this
paper, except if the extreme time pressure usually imposed on developers to produce exe-
cutable code from incomplete verbal specifications (mostly formulated in natural language)
prevents them fromat least once tryingout amore reliable option.Here is a concrete example
what could have been done. On September 27, 2000, the penultimate day of his sabbatical
stay with Microsoft Research in Redmond, in a seminar talk to representatives of the C�

development team, the first author suggested to use the method, at the time formulated and
presented in terms of Java/JVM for publication in what became the Jbook[36], for the
following five fundamental activities in relation to the at-the-time ongoing development of
what became known as the C� language with the underlying CLR virtual machine:
• defining an ASM model asexecutable specification of critical language constructsor
layers (if not of the entire language) and of the mapping to IL code,

• generating test casesfor the implementing code from the ASM model,
• using the ASM model asoracle for test evaluationsand for comparing model test runs
with code test runs,

• using the ASM model asinternal documentationfor future language extensions and for
relating other .NET languages to C�, in particular those which are equipped already with
an ASM model of their semantics,

• using the ASM model asbasis for writing innovative handbooksfor users and for main-
tenance professionals, where the innovative character derives from being (a) accurate yet
simple and easy to understand, (b) complete and detailed yet succinct.

Acknowledgements

We gratefully acknowledge partial support of this work by a Microsoft grant within the
ROTOR project during the year 2002–2003.We thank Bruno Quarta for attracting us to the
C� modeling work, even ifpost festam, as part of the ROTOR project. We also thank two
anonymous referees for valuable criticism which helped us improve the exposition.

References

[1] J.-R. Abrial, E. Börger, H. Langmaack, The steam boiler case study: competition of formal program
specification and developmentmethods, in: J.-R.Abrial, E. Börger, H. Langmaack (Eds.), FormalMethods for
Industrial Applications. Specifying and Programming the Steam-Boiler Control, Lecture Notes in Computer
Science, Vol. 1165, Springer, Berlin, 1996, pp. 1–12.

[2] J.Alves-Foss, Formal Syntax andSemantics of Java, LectureNotes inComputer Science,Vol. 1523, Springer,
Berlin, 1998.

ARTICLE IN PRESS
E. Börger et al. / Theoretical Computer Science() – 49

[3] T. Archer, A. Whitechapel, Inside C�, Microsoft Press, 2002.
[4] C. Beierle, E. Börger, I. Durdanovi´c, U. Glässer, E. Riccobene, Refining abstract machine specifications of

the steam boiler control to well documented executable code, in: J.-R. Abrial, E. Börger, H. Langmaack
(Eds.), Formal Methods for Industrial Applications. Specifying and Programming the Steam-Boiler Control,
Lecture Notes in Computer Science, Vol. 1165, Springer, Berlin, 1996, pp. 62–78.

[5] E. Börger, Abstract state machines: a unifying view of models of computation and of system design
frameworks, Ann. Pure Appl. Logic (2005).

[6] E. Börger, A logical operational semantics for full Prolog. Part I: selection core and control, in: E. Börger,
H. Kleine Büning, M.M. Richter, W. Schönfeld (Eds.), CSL’89. 3rd Workshop on Computer Science Logic,
Lecture Notes in Computer Science, Vol. 440, Springer, Berlin, 1990, pp. 36–64.

[7] E. Börger, High-level system design and analysis using abstract state machines, in: D. Hutter, W. Stephan,
P. Traverso, M. Ullmann (Eds.), Current Trends in Applied Formal Methods (FM-Trends 98), Lecture Notes
in Computer Science, Vol. 1641, Springer, Berlin, 1999, pp. 1–43.

[8] E. Börger, The ASM ground model method as a foundation of requirements engineering, in: N. Dershowitz
(Ed.), Manna-Sympo., Lecture Notes in Computer Science, Vol. 2772, Springer, Berlin, 2003.

[9] E. Börger, The ASM refinement method, Formal Aspects Comput. 15 (2003) 237–257.
[10] E. Börger, T. Bolognesi, Remarks on turboASMs for computing functional equations and recursion schemes,

in: E. Börger, A. Gargantini, E. Riccobene (Eds.), Abstract State Machines 2003—Advances in Theory and
Applications, Lecture Notes in Computer Science, Vol. 2589, Springer, Berlin, 2003, pp. 218–228.

[11] E. Börger, K. Dässler, Prolog: DIN papers for discussion, ISO/IEC JTCI SC22WG17 Prolog Standardization
Document 58, National Physical Laboratory, Middlesex, England, 1990.

[12] E. Börger, N.G. Fruja, V. Gervasi, R. Stärk, A complete formal definition of the semantics of C�, Technical
Report, 2004, in preparation.

[13] E. Börger, L. Mearelli, Integrating ASMs into the software development life cycle, J. Univ. Comput. Sci. 3
(5) (1997) 603–665.

[14] E. Börger, J. Schmid, Composition and submachine concepts for sequential ASMs, in: P. Clote, H.
Schwichtenberg (Eds.), Computer Science Logic (Proc. CSL, 2000), Lecture Notes in Computer Science,
Vol. 1862, Springer, Berlin, 2000, pp. 41–60.

[15] E. Börger, R.F. Stärk, Exploiting abstraction for specification reuse. The Java/C� case study, in: F.S. de Boer,
M.M. Bonsangue, S. Graf, W.-P. de Roever (Eds.), Proc. FMCO’03, Lecture Notes in Computer Science,
Springer, Berlin, 2004.

[16] E. Börger, R.F. Stärk, Abstract State Machines. A Method for High-Level System Design and Analysis,
Springer, Berlin, 2003.

[17] M. Broy, S. Merz, K. Spies, Formal Systems Specification—The RPC-Memory Specification Case Study,
Lecture Notes in Computer Science, Vol. 1169, Springer, Berlin, 1996.

[18] Common Language Infrastructure, Standard ECMA-335, 2003,http://www.ecma-
international.org.

[19] Foundations of Software Engineering Group, Microsoft Research, AsmL, 2001, web pages at
http://research.microsoft.com/foundations/AsmL/.

[20] N.G. Fruja, Specification and implementation problems for C�, in: B. Thalheim, W. Zimmermann (Eds.),
Abstract State Machines 2004, Lecture Notes in Computer Science, Springer, Berlin, 2004.

[21] N.G. Fruja, The correctness of the definite assignment analysis in C�, J. Object Technology 3 (9) (2004).
[22] N.G. Fruja, R.F. Stärk, The hidden computation steps of turbo abstract state machines, in: E. Börger, A.

Gargantini, E. Riccobene (Eds.), Abstract State Machines 2003—Advances in Theory and Applications,
Lecture Notes in Computer Science, Vol. 2589, Springer, Berlin, 2003, pp. 244–262.

[23] A.D. Gordon, D. Syme, Typing a multi-language intermediate code, in: Proc. 28th Ann. ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, London, 2001, pp. 248–260.

[24] P. Hartel, L. Moreau, Formalizing the safety of Java, the JavaVirtual Machine and Java Card, ACM Comput.
Surv. 33 (4) (2001) 517–558.

[25] A. Hejlsberg, S. Wiltamuth, P. Golde, C� Language Specification, Addison-Wesley, Reading, MA, 2003.
[26] J. Huggins, Broy–Lamport specification problem: a Gurevich abstract state machine solution, Tech. Report

CSE-TR-320-96, EECS Department, University of Michigan, 1996.
[27] C� Language Specification, Standard ECMA-334, 2001,http://www.ecma-international.org.
[28] C. Lewerentz, T. Lindner, Formal development of reactive systems, Case Study “Production Cell”, Lecture

Notes in Computer Science, Vol. 891, Springer, Berlin, 1995.

http://www.ecma-international.org
http://www.ecma-international.org
http://research.microsoft.com/foundations/AsmL/
http://www.ecma-international.org

50 E. Börger et al. / Theoretical Computer Science() –

ARTICLE IN PRESS

[29] Mono compiler for C�, http://www.go-mono.com/c-sharp.html.
[30] J. Prosise, Programming Microsoft .NET, Microsoft Press, 2002.
[31] J. Richter, Applied Microsoft .NET Framework Programming, Microsoft Press, 2002.
[32] J. Schmid, Refinement and implementation techniques for abstract state machines, Ph.D. Thesis, University

of Ulm, Germany, 2002.
[33] J. Schmid, Executing ASM specifications with AsmGofer, web pages athttp://www.tydo.de/

AsmGofer.
[34] SSCLI (Rotor) web site,http://www.sscli.net
[35] R.F. Stärk, E. Börger, AnASM specification of C� threads and the .NET memory model, in: B. Thalheim,W.

Zimmermann (Eds.), Abstract State Machines 2004, Lecture Notes in Computer Science, Springer, Berlin,
2004.

[36] R.F. Stärk, J. Schmid, E. Börger, Java and the Java Virtual Machine—Definition, Verification, Validation,
Springer, Berlin, 2001.

[37] D. Stutz, T. Neward, G. Shilling, Shared Source CLI Essentials, O’Reilly, Sebastopol, 2003.
[38] D. Syme, Declarative theorem proving for operational semantics, Ph.D. Thesis, University of Cambridge,

1998.
[39] Visual Studio .NET 2003,http://msdn.microsoft.com/vstudio/
[40] W. Zimmermann, A. Dold, A framework for modeling the semantics of expression evaluation with abstract

state machines, in: E. Börger, A. Gargantini, E. Riccobene (Eds.), Abstract State Machines 2003—Advances
in Theory and Applications, Lecture Notes in Computer Science, Vol. 2589, Springer, Berlin, 2003,
pp. 391–406.

http://www.go-mono.com/c-sharp.html
http://www.tydo.de/AsmGofer
http://www.tydo.de/AsmGofer
http://www.sscli.net
http://msdn.microsoft.com/vstudio/

	A high-level modular definition ofthe semantics of C=2pt
	Introduction
	The imperative core C0.15ex=2ptI
	Static semantics ofC=2ptI
	Control-flow analysis

	Dynamic semantics for C=2ptI
	Expression evaluation rules
	Statement execution rules

	C0.15ex=2ptC: refining C0.15ex=2ptI by static class features
	Static semantics ofC=2ptI
	Dynamic semantics ofC=2ptI
	Expression evaluation rules
	Statement execution rules

	Refinement C0.15ex=2ptO of C0.15ex=2ptC by object related features
	Static semantics ofC=2ptO
	Dynamic semantics for C=2ptO
	Refinement of macros
	ASM function new

	Refinement C0.15ex=2ptE of C0.15ex=2ptO by exception handling
	Static semantics ofC=2ptE
	Dynamic semantics for C=2ptE
	Expression evaluation rules
	Statement execution rules

	Refinement C0.15ex=2ptD of C0.15ex=2ptE by delegates
	Delegates
	Properties, events and further features in C=2ptD
	Properties
	Indexers
	Further constructs

	Refinement C0.15ex=2ptU by pointers in unsafe code
	Signature refinement for C=2ptU
	Transition rule refinement for unsafe code

	Related work and conclusion
	Acknowledgements
	References

