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When you can measure what you are speaking about, and ex-
press it in numbers, you know something about it; but when
you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind: it may
be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.

William Thomson, Lord Kelvin
Popular Lectures and Addresses (1891-1894)

0. Introduction

Consider the following statement:

Mary had a baby.1

and compare it with Lord Kelvin’s statement above. There is little doubt that most
readers would describe Lord Kelvin’s quote as more complex than the statement about
Mary. Still, what exactly makes it more complex is unclear. The first statement is
longer (with respect to several possible definitions of length or, more generally, of
size), has a deeper syntactic structure, uses a more varied lexicon, and so on. But what
relationship all these differences have with its complexity?

Textual complexity is indeed an elusive and multi-faceted quality, an attribute of
texts of which we currently have only an unsatisfactory intuitive understanding. There
is probably no hope to express such an attribute with a single “magic” number, as we
do with simpler attributes like length.

A look backward to the history of our understanding of complex attributes of
things, however, provides some encouragement. For many centuries, for example, we
talked of color attributes only by referring to them with vague words (e.g., “blue”),
by establishing imprecise analogies with colors found in nature (e.g., “peach”), or
by creative use of adjectives and other specifications. Today, we can refer to various
facets of “color” with great precision: to the hue as a frequency in the electromagnetic

1All sample texts not explicitly attributed are artificial.
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spectrum, to the luminance as a multiple of a standard light emitter (the candle), to the
saturation as a percentage, etc.

Our purpose in this paper is to propose some measures of a few facets of textual
complexity. In particular, we will keep an engineering approach, and concentrate on
quantitative measures that can be obtained through objective, repeatable methods, and
possibly by using automatic tools and procedures. In the process, we will challenge
our intuitive understanding of complexity, in order to define some axioms that will
help us in our task.

1. Measures and Metrics

According to Fenton [FP97],

Measurement is the process by which numbers or symbols are assigned
to attributes of entities in the real world in such a way as to describe them
according to clearly defined rules.

More precisely, measurement consists in mapping attributes of real-world entities to
elements of some formally-defined set (often, a numeric set), and in mapping em-
pirical relationships between the same entities to formal relationships between the
corresponding elements of the formal set.

As an example, let us consider an apparently well-understood attribute like length
of a text. We can define a simple mapping L between a text t and a natural number,
meant to convey the essence of length, in this way:

L(t) = number of words in t

Moreover, we can map the intuitive relationship longer-than between texts to the for-
mal relation greater-than (written >) between natural numbers. Thus, given two texts
t and t′, we can say that t is longer than t′ if and only if L(t) > L(t′). Naturally,
giving a precise definition does not spare us from possible counter-intuitive results. In
fact, with the definitions above, the text

Mary had a baby. She was fair and had blue eyes. I was in love with the
little angel!

turns out to be exactly as long as

Guaranteeing satisfactory results without appropriately substantiating un-
obvious assertions is inadmissible. Measurements demand thorough ex-
amination, formal verification, and intuitive acceptability.
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A different definition of L(t) (e.g., number of characters in t) might be more in line
with our intuition in this case. It is not difficult to be convinced that the quality of
a measure is strictly related to its ability to accurately reflect our intuition about the
phenomenon that is being measured.

While in our example natural numbers were used as destination for the mapping,
in many cases other sets may be more suited. For example, the attribute style of a text
may be classified “high”, “pompous”, “familiar”, and so on. As far as our intuition
goes, it is pointless to define style as a number. This is not by chance: different
attributes have different properties and need different measurement scales. There are
five well-know classes of measurement scales, in increasing order of expressiveness:

• Nominal scale. Entities are simply collected in similarity classes, and no or-
dering exists between classes. Our definition of a measure for style was on
a nominal scale: there is no ordering between “pompous” and “bureaucratic”,
and no magnitude is associated with the various classes.

• Ordinal scale. This scale adds an ordering relationship between the classes of
the nominal scale. For example, the understandability attribute of a text could
be measured on an ordinal scale as “low”, “medium”, “high”, in increasing
order. In order for the representation to be valid, the order established between
the symbols “low”, “medium” and “high” must be consistent with the intuitive
ordering based on understandability between texts. There is still no magnitude
associated with the measure.

• Interval scale. Interval scales add the capability to express the difference be-
tween two measures. Thus, if we define a measure of the period of a text based
on the century the text was written, we can certainly say that a XV century text
was written after a XIII century text, and — more precisely — that it was written
two centuries later than the XIII century text. On an interval scale, addition and
subtraction are legitimate, while multiplication and division are not: we cannot
say that the period of a text is twice the period of another text.

• Ratio scale. These last two operations become legitimate on a ratio scale. These
scales are characterized by the presence of a zero element, denoting the total
absence of the attribute that is being measured. For example, our definition of
length above is a ratio scale, since we have a zero element — the empty text,
having length zero. Moreover, the measurement interval that starts at the zero
element increases at fixed steps, called units. In our case, the units for L were
single words.
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• Absolute scale. The more precise scale is the absolute scale, that simply counts
occurrences of something characterizing the attribute in the entity. Absolute
scales are unique: there cannot be two different absolute scales for the same
attributes. For example, our measure L is a ratio scale for length (we have seen
that we could also have counted characters or lines instead of words), but it is
an absolute scale for number of words.

It can be noted that each scale class includes all the properties of the preceding ones.
So, using our measure for length, we can distinguish whether two texts are of equal
length or not (nominal scale), we can say whether a text is longer or shorter than
another text (ordinal scale), we can measure the difference in length between two
texts (interval scale), and can say that the first text is exactly, say, 1.86 times as long
as the second one (ratio scale).

With the conceptual tools that we presented above, collectively known as the rep-
resentational theory of measurement, we are able to define precise and mathematically
well-founded measures of simple attributes. In particular, we are interested in direct
measures, that is, in attributes whose value can be determined by direct observation
of the entity that is being measured. On the contrary, derived measures rely on rela-
tionships established by mathematics or by physical laws to obtain the value of the
attributes. For example, the attribute temperature of a room2 is usually measured in-
directly by measuring directly the length of a column of mercury.

Unfortunately, in the case of very complex attributes — like complexity of a text —
we cannot rely on precise relationships like those provided by physical laws. Instead,
the so-called Factors-Criteria-Metrics (FCM for short) [MRW77] can be used.

In the FCM model, a quality that cannot be measured directly is instead estimated
by using a number of quality factors, i.e., other, simpler attributes that have a strong
positive correlation with the principal quality. Factors are usually defined aiming at
minimum overlap, and thus at maximum orthogonality among them. This allows each
factor to be controlled independently, and maximizes the efficiency of information
collection. In addition, factors are supplemented by a set of support properties called
criteria, which serve as indicators or predictors of factors. Criteria may be decom-
posed hierarchically in case they are not directly measurable properties. In that case,
a derived measure can be assigned to a criterion by composing (by using some appro-
priate accumulation function) the measures of the leaves of its decomposition tree.

Finally, a metric is a direct measure of a criterion or sub-criterion, in the sense of
our initial definition. In particular, metrics must be defined by specifying an attribute

2We are oversimplifying here; a more precise definition would be that of “temperature of the air at a
certain point inside a room”.
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Figure 1: The Factors-Criteria-Metrics model.

of the entity and the exact procedure for measuring it. The overall structure of a FCM
model is depicted in Figure 1.

For example, let us consider the complex attribute size of a text. We do not know
how to measure size (and indeed, we do not even have a precise definition of what
we mean by size), but we know that length influences size, and thus, length can be
considered to be a factor for size (together with other factors, such as size of lexicon).
In turn, number of words is a criterion for length (together with other criteria, such
as average word length). To measure number of words we define a precise metric,
detailing what is a “word”, counting rules, how to treat special cases like hyphenated
words, and other details that guarantee objectivity and repeatability of the measure.

In this work, we do not try to define a complete FCM model for complexity. Rather,
we discuss a selection of possible criteria and metrics, with a particular emphasis on
the possibility of automatically obtaining the measures from the text.

2. Axioms of complexity

In the previous section we have seen that any measure is only as good as its capability
to reflect our intuitive understanding of the phenomenon that is being measured. The
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same principle holds for the metrics of the FCM model. But what is our “intuitive
understanding” of textual complexity? In this section, we try to clarify this point
by considering a number of axioms for the attribute complexity. It is important to
remark that we are not trying to give an ultimate definition of complexity through
these axioms — in other words, we are not saying which of the proposed properties are
really axioms that are held true with no need for proof. However, concrete definitions
of metrics for complexity will exhibit certain properties based on those among the
axioms (below) that are satisfied by the metric.

Notation. In the following, we indicate with t, t′ etc. an arbitrary text, and with C a
measure for complexity. We use the standard set-theoretic and logic notation applied
to texts: t ⊆ t′ means that text t′ includes text t, and t ∩ t′ indicates the common part
of text between t and t′. To indicate the text obtained by appending t′ at the end of t,
we write t · t′. We use the symbol ∅ to denote the empty text.

Axiom 0 (Zero). We first investigate the complexity of the empty text. If complexity
has a minimum, then the empty text is a good candidate to represent the less complex
text possible. In formal terms,

∀t 6= ∅, C(t) > C(∅)

However, even this basic property is not to be taken for granted. What is the com-
plexity of silence? In terms of size or structure, we could assign the lowest possible
complexity to the empty text, but some measure could consider “silence” to be the
most difficult text to decode, and possibly assign the highest possible complexity to it.

Axiom 1 (Monotonicity). A second interesting point is whether complexity is mono-
tonic, i.e., if by adding something to a text, its complexity does necessarily increase.
In formal terms, we want to determine if, given a certain measure C,

∀t, t′, t ⊆ t′ ⇒ C(t) ≤ C(t′)

is true or not. Monotonicity is an important characteristic, but the answer is not self-
evident. For example, t′ could contain an explanation for something that is stated in
t, and in this case the complete text t′ could well be considered less complex than its
unexplained fragment t. On the other hand, our understanding of complexity could
tend to correlate the complexity of a text with its size (longer texts are more complex
than shorter texts), and in this case monotonicity would clearly hold.

Monotonic metrics tend to be on ratio or absolute scales. In fact, the definition
above lends itself naturally to the convention C(∅) = 0, with any other text having
higher complexity than the empty text.
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Axiom 2 (Compositionality). Can the complexity of a text be determined exclusively
from the complexity of its constituent parts? If this is the case, such a measure is said
to be compositional. Formally, given a function T to compose two texts into a larger
text, and a function M to compose two measures into a single measure, composition-
ality can be expressed as follows:

∀t, t′, C(T (t, t′)) = M(C(t), C(t′))

For example, if we take the append operator · as T and algebraic sum + as M , we can
rewrite the property above as

∀t, t′, C(t · t′) = C(t) + C(t′)

meaning that if we want to measure the complexity of a two-parts text, we can measure
the complexity of the first part, then the complexity of the second part, and add the
two together (the process extends in the obvious way to more than two parts).

Compositional measures have great practical and theoretical advantages. Such
measures can be defined by assigning values to some basic cases, and then giving
rules that relate the way in which texts are built from the basic cases, and the way in
which complexity grows when texts are composed. As a pleasant side effect, compo-
sitionality guarantees that any observation made on small examples is also applicable
to texts of arbitrary size.

Axiom 3 (Classifiability). It would be very surprising if each and every text had its
own complexity, different from that of any other text. Such a property would render
text classification impossible: each text would constitute a class on its own. On the
contrary, we can expect that, apart from some particular case, given an arbitrary text
t we can find a different text t′ that has the same complexity. In formal terms, this
property can be written

∀t 6= ∅, ∃t′ 6= t such that C(t) = C(t′)

Metrics that satisfy classifiability permit the creation of classes of text of equal com-
plexity. If complexity is measured on at least an ordinal scale, these classes can also
be ordered — a capital property for practical applications.

Axiom 4 (Structurality). Complexity can be assigned to some aspect of a text rather
than to the entire text as a whole. In particular, it is not unreasonable to assume
that complexity resides in the structure (of some kind, e.g. syntactic structure) of a
text rather than on the particular concrete elements (e.g., particular words) of the text.
Formally, given an abstraction function S that extracts some structural aspect of a text,
we can define structurality as

∀t, t′, S(t) = S(t′) ⇒ C(t) = C(t′)
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Figure 2: A sample structural metric. (a) and (b), syntactic parse trees for two state-
ments. (c), how a structural metric measures only attributes of the structure of the
texts.

As a typical example, if S is a function to extract the syntactic structure of a text, a
metric obeying structurality would declare that two texts with the same syntactic struc-
ture have the same complexity — regardless of the particular nouns, verbs, adjectives,
etc. that appear in the texts. Figure 2 illustrates this property: here we consider syn-
tactic structure (as obtained by a standard parser for English) as our S. The two texts
“Mary had a baby” (t) and “Joe watched the scene” (t′) have the same syntactic struc-
ture, hence the measure C (in the example, a simple count of the nodes in the parse
tree) returns the same value for both texts.

Axiom 5 (Unstructurality). The property that is dual to structurality is also reasonable,
and assumes the same formal expression. Given a flattening function F , i.e., a function
that discards the structure from a text, we can define unstructurality as

∀t, t′, F (t) = F (t′) ⇒ C(t) = C(t′)
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Mary reached the ball with Joe,
and watched the orchestra playing.

and, 1
ball, 1
Joe, 1
Mary, 1
orchestra, 1
playing, 1
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the, 2
watched, 1
with, 1Joe reached the orchestra, and

watched Mary playing with the ball.

F

F

C
10

Figure 3: A sample unstructural metric.

For example, F could be a function that, given a text, returns simply the set of the
words that appear in the text, possibly with the respective multiplicity. Such a function
would flatten-out the syntactic structure; this property states that texts using the same
words have the same complexity. Figure 3 illustrates this definition.

It is important to remark that structurality and unstructurality are indeed the same
property in formal terms; only our interpretation of the meaning of the abstraction
function used (S to extract structure, or F to flatten it out) determines the kind of
property that we are using.

Axiom 6 (Order independence). As a particularly relevant case of unstructurality, we
consider the dependence of the metric for complexity on the order in which the text is
presented. Shall a question, followed by an answer, have the same complexity as the
same answer, followed by the question? In formal terms,

∀t, t′, C(t · t′) = C(t′ · t)

states that the metric C is independent of the order in which the constituent parts of a
text appear.

This list of axioms is not intended to be exhaustive. More axioms could be de-
fined, to express the desired behavior of complexity (better reflecting our intuitive
understanding of that attribute) or desired computational properties of its measures.
However, the list above already constitutes a good characterization of complexity, and
any desired addition would not affect the observations made in the following.

3. A smorgasbord of complexity metrics

In this section we present a number of metrics (in the sense of the FCM model of Sec-
tion 1) that have in common their amenability to automatic extraction and processing.
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While all the metrics presented have some correlation with intuitive complexity, we
do not prescribe how these metrics should be used to estimate criteria and factors of
complexity. This task is better left to a discussion of the ontological nature of com-
plexity. Here we take the pragmatic approach of providing estimators: we concentrate
on the process of obtaining estimators, and leave the actual estimation to further work.
However, for presentation purposes, metrics are collected in classes, that could hint at
which factors the metrics relate to.

3.1. Readability metrics

A wide array of metrics has been developed in the second half of the last century for
readability, from the venerable Flesch Readability Index, to many recent proposals
(see Masi in this volume). It is sensible to assume that readability is a factor of com-
plexity, under the hypothesis that complex texts are more difficult to read. Readability
metrics are thus relevant for our purposes.

Table 1, compiled with the help of [MP82], collects a number of early proposals
for readability metrics. All the metrics combine various features of texts in different
ways and with different parameters. However, if we look at these formulas in the
light of our axioms, we discover that they measure very similar attributes. This is
an indication that the underlying intuition about readability is shared among all the
authors.

All the metrics are density-like measures; they do not depend on the size of the
text. In fact, all variable terms are divided by W (number of words in the text) or by
T (number of sentences in the text), both of which are estimators for size. Since all
the other parameters are also correlated with size, and they only appear in fractions,
dimensional analysis ensures us that the formulas produce adimensional results.

As a consequence, readability measures do not satisfy our axioms Zero3 and Mono-
tonicity. All these metrics for readability are not compositional, due to the presence of
density factors (S/W , W/T , M/W , etc.). We can easily prove it by contradiction.4

Let us assume that C(t) = S/W is a measure for readability, and that the textual
composition function T does not discard part of the text. Then by Axiom 2 we have:

S + S′

W + W ′
= C(T (t, t′)) = M(C(t), C(t′)) = M(

S

W
,

S′

W ′
)

but we also have that

M(
S

W
,

S′

W ′
) = M(

2S

2W
,

S′

W ′
) =

2S + S

2W + W
3In effect, none of the measures can be computed for an empty text, since in that case W = T = 0.
4We prove it for a single density factor; the proof can be applied to complete formulas as well. Numeric

factors are non-essential to the proof.
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Author Formula Reference

Flesch R = 206.835− 84.6 S
W

− 1.015W
T

[Fle48]

Farr, Jenkins, Paterson R = −31.517 + 159.9 M
W

− 1.015W
T

[FJP51]

Dale, Chall G = 19.4265− 15.79 D
W

+ 0.0496W
T

[DC48]

Powers, Sumner, Kearl G = 14.8172− 11.55 D
W

+ 0.0596W
T

[PSK58]

Holquist G = 14.862− 11.42 D
W

+ 0.0512W
T

[Hol68]

Gunning G = 3.0680 + 9.84 P
W

+ 0.0877W
T

[Gun52]

Coleman R = −37.95 + 116.0 M
W

+ 148.0 T
W

[Col65]

McLaughlin G′ = 3.1291 + 5.7127
√

P
T

[McL69]

Measures

R = Readability index (0–100)
G = Grade (0-12) to answer 50% of the questions about a text
G′ = Grade (0-12) to answer 100% of the questions about a text

Parameters

W = total number of words
T = total number of sentences
L = total number of letters
V = total number of vowels
D = total number of words in the Dale Long List [DC48]
S = total number of syllables

M = total number of monosyllabic words
P = total number of words with 3 syllables or more

Table 1: A collection of metrics for readability proposed in the literature.
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thus leading to the contradiction:

S + S′

W + W ′
=

2S + S′

2W + W ′

Since they are based exclusively on a count of the number of words, sentences,
syllables, etc., all the metrics are clearly unstructural and order-independent. In fact,
according to these metrics, the text

Mary had a baby. She was fair and had blue eyes. I was in love with the
little angel!

has exactly the same readability as

A and angel, baby blue eyes! Fair had had I in little love Mary. She the
was was with.

It appears thus that readability is only a marginally useful indicator for complexity,
covering almost exclusively the unstructural aspects.

3.2. Information content metrics

Another classical field of studies that is relevant for our purposes is Information
Theory. Originated from the seminal works of Nyquist [Nyq24, Nyq28] and Hart-
ley [Har28], and brought to maturity by Shannon [Sha48], Information Theory deals
with the information content of a signal. The hypothesis here is that texts conveying
more information are more complex, or, in terms of resources, that more informa-
tion in a text requires more memory and more time to the reader, thus increasing the
perceived complexity.

A text is modeled as an ergodic source; in other words, a text is seen as a series
of symbols (letters, words, etc.), where each symbol appears with a certain probability
(that can depend on the appearance of previous symbols). At each step, the source
has a certain degree of freedom about the next symbol to be produced; from the point
of view of the receiver (the reader of the text), this freedom corresponds to a certain
degree of uncertainty about the next symbol that will be read.

The amount of information that is carried by a text is directly related (and is actu-
ally a measure of) this freedom/uncertainty. In fact, if we imagine a source that has no
choice — say, always producing a symbol α —, the reader does not gain any knowl-
edge by examining the message: she would know beforehand what the “content” is.
After all, nobody wants to read a page of αs.

If all symbols appear with the same probability, there is no way for the reader to
guess the next symbol without actually looking at the message. For example, if we
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are tossing a coin and writing down the sequence of outcomes, the person reading the
text will not know what to expect next after having read only part of the text. In this
case, the information content of the text is maximal: the coin has maximum freedom,
and the reader maximum uncertainty.

English as a language has much less freedom, since it exhibits an extremely rich
structure on all levels, from letter sequences to argumentative structure. At the lower
level, certain letters are more frequent than others in English. Our measures on a
corpus of 17 million characters (contemporary technical English), show that the most
frequent letter, ‘e’, has a frequency of 11.46%, while the less frequent one, ‘z’, has a
frequency of 0.14%. Thus, in our sense, a ‘z’ in the text conveys more information
than an ‘e’. If we examine whole words, we find that the most frequent word, ‘the’,
has a frequency of 5.13%, while other words like ‘zealously’ (among many others)
have a frequency as low as 0.000000448995%. Thus, an occurrence of ‘zealously’ is
more characterizing, carries more information, and presumably adds more complexity
to the text, than an occurrence of ‘the’.

The classical measure of information content is entropy, that is defined formally
as

H = −
∑

s∈A

P(s) log2 P(s)

where A is the set of all the symbols (letters, words, etc.), and P(s) is the probability
of occurrence of symbol s. The measure H that is obtained, expressed in bits (short
for Binary digIT), is on an absolute scale: the measure counts the minimum number
of bits per symbol that are needed to encode the message produced by the source, i.e.
the text.

Naturally, in English the probability of occurrence of a certain symbol depends
on what has already appeared. In certain cases the dependence can be very strong:
a search in a dictionary finds 420 words containing the sequence THE, but only one
(earthquake) containing the sequence THQ. The interpretation of this fact is twofold.
First, this means that after having seen a ‘t’ and a ‘h’, the probability of seeing an ‘e’
is very high (thus ‘e’ brings little new information), while the probability of seeing a
‘q’ is very low (thus ‘q’ brings much information). Second, and confirming this last
point, we know that seeing a ‘q’ after ‘th’ uniquely identifies the word “earthquake”:
all the preceding and following letters bring no new information at all.

The same reasoning applies to sequences of words, of parts-of-speech, of semantic
categories, etc. In the case of sequences, entropy is defined as follows:

Hn = −
∑

B∈An,s∈A

P(B)PB(s) log2 PB(s)
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sample size L-H W-H0 W-H1 W-H2

C.T.E. 2227198 4.233 10.778 6.395 2.670
Flatland [Abb84] 33587 4.158 9.173 4.506 1.154
When you can measure. . . 62 4.179 4.912 0.850 0.113
Guaranteeing satisfactory results. . . 19 4.045 4.248 0 0
Mary had a baby. . . 19 3.909 4.037 0.222 0

Table 2: Measures of entropy on various texts.

where An denotes the set of all the sequences of symbols from A of length n, P(B)
denotes the probability of occurrence of the sequence B, and PB(s) denotes the proba-
bility of occurrence of a symbol s after a sequence of symbols B. Progressively larger
values of n provide more precise measurement of the way in which inter-symbol rela-
tionships of increasing distance influence the information content.

Table 2 presents the results of our entropy measures on various texts: the large
Contemporary Technical English (C.T.E.) corpus that we used above, a moderate size
narrative, and three of our sample texts. As can be observed, letter-based entropy L-H
is substantially independent of size (that is measured as “number of words” in Table 2,
where a word is any sequence of symbols surrounded by white space). Moreover, it
appears that the technical language used in the C.T.E., and the 19th-century prose in
Flatland and in Lord Kelvin’s statement produce slightly higher measures for L-H
than the other simpler texts.

The difference is even more striking when we consider word-based entropy, W-
H0 (H0 is equivalent to H , according to the definition of Hn above). In this case,
the C.T.E. and Flatland have much higher information content than any of the sample
texts; among the samples, Lord Kelvin’s statement scores more complex, and our
“Mary had a baby” sample scores less complex — that is well in accord with our
intuition.

Unfortunately, the sample texts are too short to allow significative measurement of
word sequence-based entropy — the values tend to 0 since sequences of 2 or 3 words
tend to be unique in such short texts. The values for C.T.E. and Flatland are once
again higher, as we would expect. In particular, for C.T.E., a W-H1 value of 6.395
means that, on average, given a single word, there are slightly more than 84 (26.395)
words that can follow the word given. There is thus a substantial uncertainty about
what will actually follow after a certain word. Even when two words in sequence are
given, there are still — on average — more than 6 words among which the third can
be chosen, according to the value for W-H2. We really need to read the entire text
to know what the text is saying — an indication that the text has indeed substantial
complexity.
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Let us now consider which ones among our axioms are satisfied by information
content measures (with special reference to entropy-based measures). First, axiom
Zero is satisfied, with C(∅) = 0. In fact, for an empty text we have A = An = ∅,
and thus the result of the sum is 0. Entropy is not monotonic; the way in which the
measure changes depends on the nature of the text that is added (and, in particular, on
the way in which the new text changes the frequency of each symbol). For example,
taking C(s) equal to H for a source s (with independent probabilities), we have that

C(‘a b a’) = 0.918 ≤ C(‘a b’) = 1 ≤ C(‘a b c’) = 1.585

As can be seen, depending on what we add after ‘a b’, entropy can either increase or
decrease. Moreover, entropy is not compositional: again, the way in which frequen-
cies change when composing texts is not fixed. Let us take as our text composition
operator T the append operation, and assume that there exists a function M to com-
pose the measures, as per axiom 2. Then, we have

2 = C(‘a b c d’)
= C(T (‘a b’, ‘c d’))
= M(C(‘a b’), C(‘c d’))
= M(1, 1)

= M(C(‘a b’), C(‘a b’))
= C(T (‘a b’, ‘c d’))
= C(‘a b a b’)
= 1

The contradiction 2 = 1 proves that no such M can exist, and thus that entropy-based
measures are not compositional.

We have already seen in the examples that entropy satisfies our classifiability ax-
iom. Regarding structurality and unstructurality, the nature of a measure depends on
the particular kind of symbols that is being analyzed. If we take letters or words as
symbols, the measure is clearly unstructural:

C(‘Mary had a baby’) = 2 = C(‘A baby had Mary’)

However, if we consider higher-order structures, and especially if we take Hn for n >
0, the measure tends to become structural. For example, we can decide to consider
parts-of-speech as symbols, instead of words. The text “Mary had a baby” would be
mapped (by the abstraction function S of axiom 45) to the sequence of tags NN VB

5This particular abstraction function is implemented in a number of popular parts-of-speech taggers.
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DT NN (noun, verb, determiner, noun). The text “Joe watched the scene” produces
the same sequence of parts-of-speech, thus

S(‘Mary had a baby’) = S(‘Joe watched the scene’)
⇒ C(‘Mary had a baby’) = C(‘Joe watched the scene’)

that is exactly our definition of structurality. In the cases in which C is unstructural,
order-independence is also satisfied, for n = 0. It is never satisfied for n ≥ 1, since in
this case the ordering of symbols affects the probability of occurrence of blocks that
are used by the measure.

In conclusion, metrics based on information content appear to measure relevant
facets of complexity, can be easily computed by using the definition of entropy, have a
good measurement scale, and can be used to measure structural or unstructural aspects,
according to necessity, by using different kinds of symbols and block lengths.

3.3. Structural metrics

In the previous section we have seen how entropy can be used to measure some at-
tribute of the structure of a text. However, while a sequence of symbols is a close
model for a text (taken as a sequence of letters or words), it is a poor model for more
complex structures: and every text of practical interest has many of these structures
underlying the surface “sequence of words”.

A large family of metrics can be obtained by explicitly identifying and building
such structures, and by measuring their attributes through direct metrics.

The obvious candidate for a structural metric is some measure concerning the syn-
tactic structure of a statement. A parse tree for a statement can be obtained by using
any of a number of grammars, formalisms, and tools that are widely available (see
[All95] for a survey of the field). For our purposes, it is not particularly relevant
which tools we choose: rather, we are mainly interested in finding an automatic way
of building parse trees, in order to guarantee consistence and repeatability of the mea-
sures. In the following, we use our domain-based parser CICO [Ger01], with a simple
ad-hoc grammar for English, but other parsers could be used as well.

CICO is a parser based on fuzzy matching of textual templates to fragments of a
text. The matching is based on a set of conjunctive types: each term in the text has
associated a set of tags, that can denote either grammatical properties (for example:
noun, verb, singular, superlative, etc.) or semantic, domain-specific properties (for
example: human being, event, time span, etc.). We assume in this section that only

We used the publicly available TreeTagger [Sch94] in our tests. The tag codes we use are inspired by those
in [MSM93].
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grammatical tags are assigned to terms, by using a parts-of-speech tagger like the one
we used in the previous section. CICO’s rules assume the form

〈Model, Action, Substitution〉

where the Model is a template for a syntactical structure, in which variable parts are
matched according to their tags; the Action is a semantic annotation (in practice, in-
structions on which kind of node to add to the parsing tree that is being constructed),
and the Substitution specifies how the fragment should be treated for the purpose of
further analysis. For example, the rule

〈 det/DT/0 adj/JJ/0 n/NN, NP $det $adj $n, $ID/NP 〉

specifies that upon matching an optional6 determiner, followed by an optional adjec-
tive, followed by a noun, the parser should emit a node of type NP, with children nodes
corresponding to the various parts of the template, and continue the parsing substitut-
ing the NP node for the whole fragment. Due to the fuzziness of the parser, a matching
can be imperfect in several ways (constituents can be out of order, extra or missing
terms are allowed, etc.). Moreover, since the parser employs a heuristic backtracking
strategy, several rules can match the same fragment, and the parser will choose the one
that maximizes the overall score of the parse tree. Both these features have a positive
impact on the robustness of the parsing, and allow reasonably compact grammars to
be used.

Once a set of parse trees is obtained for a text (see for example Table 3), various
simple measures can be obtained. A simple count of the number of nodes in the
trees provides an estimation of the complexity of the syntactic structures — clearly
a factor for complexity of the whole text. The same attribute can be measured in
slightly different ways, e.g. by measuring the depth of the deepest leaf in the tree,
or by weighting the number of leaves according to the depth. Measures for the three
sentences in Table 3 are reported in Table 4. The type of each node can also be taken
into account: prepositional phrases may conceivably add more complexity than noun
phrases.

Since metrics on syntactic structures are defined at the level of single sentences,
we are free to compose the measures in such a way as to preserve desirable properties
of the metric. We can define the measure C for an entire text t as the sum of the
measures for each sentence s in the text, as in

C(t) =
∑

s∈t

C(s)

6Optionality is denoted by the /0 tag in the template.
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Model Action Substitution
det/DT/0 adj/JJ/0 n/NN NP $det $adj $n $ID/NP
p/PRON NP $p $ID/NP
prep/IN n/NP PP $prep $n $ID/PP
p1/PP p2/PP PP $p1 $p2 $ID/PP
v/VB n/NP/0 p/PP/0 VP $v $n $p $ID/VP
BE/VB b/JJ VP BE $b $ID/VP
v1/VP c/CC v2/VP VP $v1 $c $v2 $ID/VP
n/NP v/VP S $n $v $ID/S

Mary had a baby.

S

NP VP

NPMary/P/NN

a/DT baby/NN

have/D/VB

She was fair and had
blue eyes.

S

NP VP

VP VP

NP

She/PRON

be/VB/D fair/JJ

and/CC

have/VB/D

blue/JJ eye/NN

I was in love with the
little angel!

S

NP VP

PP

PP PP

NP

I/PRON be/VB/D

in/IN

love/NN

NP with/IN

the/DT litte/JJ angel/NN

Table 3: Some parsing rules, and their application to a sample text.
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Text |L| |N | maxn∈L dn

∑

n∈L log2 dn

Mary had a baby. 4 8 3 5.17
She was fair and had blue eyes. 7 13 4 10.75
I was in love with the little angel! 8 16 5 15.29

Table 4: Some measure of structural complexity on the sample statements of Table 3.
N is the set of all the nodes in the parse tree, L ⊂ N is the set of the leaf nodes, dn is
the depth of node n.

where by s ∈ t we indicate that s ranges over the sequence of statements t. In this
case, the measure satisfies many of our axioms: in fact,

• C(t) satisfies axiom Zero, since the sum of no terms is 0;

• C(t) is monotonic, since t ⊆ t′ ⇒ ∃t′′ : t′ = t ∪ t′′ ∧ t′ ∩ t′′ = ∅ and
thus C(t′) = C(t) + C(t′′). By definition of C, ∀t, C(t) ≥ 0; it follows that
C(t′) ≥ C(t), thus proving monotonicity.

• C(t) is compositional, taking T (t, t′) = t · t′ and M(a, b) = a + b. In fact,

C(T (t, t′)) = C(t · t′)

=
∑

s∈t·t′

C(s)

=
∑

s∈t

C(s) +
∑

s∈t′

C(s)

= M(
∑

s∈t

C(s),
∑

s∈t′

C(s))

= M(C(t), C(t′))

thus proving compositionality — in the case in which composition is performed
on the level of full sentences. Similar but slightly more complex proof, that we
omit here, shows that compositionality holds also for T functions that compose
parts of sentences, as long as those T s preserve syntactic correctness.

• C(t) satisfies the Classifiability axiom. In fact, given a text t, it is sufficient to
change any of the words in t with another from the same syntactic category to
obtain a text t′ 6= t, that has the same syntactic structure and thus the same value
under C.
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• C(t) is structural, as all the parameters in the various alternative definitions de-
pend (only) on the parse trees.

• Finally, C(t) is order-independent on the level of whole sentences, since, for all
t,t′,

C(t · t′) =
∑

s∈t·t′

C(s) =
∑

s∈t

C(s) +
∑

s∈t′

C(s) =
∑

s∈t′·t

C(s) = C(t′ · t)

On the other hand, the measure is not order-independent on the level of sentence
constituents, since in this case a change of order may in general change the
syntactic structure of the sentence.

The family of measures that we have so defined have a clear correlation with the
length attribute of a text, since we are summing the measures across all the sentences
of a text. In some application, e.g. when the metrics are used to evaluate the writing
style of a text, this is not desirable. In these cases, we can define a new measure, that
we will call complexity density, by dividing the complexity measure by a measure of
length, for example number of sentences. Complexity density of a text can also be seen
as the complexity of the average sentence in the text, that explains why it can be used
as an indicator for style. Unfortunately, as happens with other density-like measures,
a number of our axioms are no longer satisfied; the flexibility of the measure is thus
reduced.

Naturally, ambiguity can prevent the identification of a single, certain parse tree
for a sentence (for example, in the well-known case of prepositional phrase attach-
ment). In turn, multiple possible parse trees lead to multiple different measures for
the same sentence, making it impossible to compute a metric. This is not as bad as
it may seem at first sight. In fact, we can well assume that this ambiguity adds some
complexity of its own, that can be measured by counting the number of possible differ-
ent parse trees, or by taking the highest complexity score among all the possible trees
for the summation. In order to maintain a close correspondence with our intuition for
complexity, whichever measuring rule is chosen for these cases, two properties should
be maintained: (i) an ambiguous sentence should not measure less complex than an
equivalent non-ambiguous one, and (ii) the measuring rule should not change the set
of axioms that are already satisfied by the metric.

In our case, taking the maximum among the measures for all the alternative parse
trees for a sentence satisfies both properties, and is an efficient and automatic7 way of
facing, if not solving, the ambiguity problem.

7The CICO parser can be instructed to output all the admissible parse trees for a sentence, instead of
only the best-scoring one.
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Although we concentrated on syntactic structures, these are not the only structures
underlying language. Most other structures are organized in a tree fashion, and are
amenable to the same kind of analysis. As an example, we can apply similar principles
to the argumentative structure of a text. In related studies, we investigated how the
rethorical structure of a sufficiently-marked text can be automatically retrieved by
using techniques similar to the ones we used above for syntactic parsing. Rules like

〈 x/THESIS IN FACT y/FACTS, PROBATION $x $y, $ID/PROBATION 〉

allow the construction of graphs representing the argumentative structure of a text,
on which measures in the style of the ones we presented above can be defined. See
Figure 4 for an example of these techniques.

There is little doubt that a text with a complex syntax does not necessarily have a
complex argumentative structure (although typically there is some correlation in sound
texts), and vice versa. This is a clear indication that the respective metrics measure
different facets of complexity. The same holds for other structures: from alliterative to
dialogic structure, a huge number of structural phenomena can be measured.

3.4. Semantic metrics

Consider our old favorite,

Mary had a baby. She was fair and had blue eyes. I was in love with the
little angel!

and compare it with the following text:

Malonylurea is a compound. It is crystalline and has ortho-pyramidal
structure. It combines with ergotamine in an endothermic reaction.

Despite the difference of their subjects, these two texts are very similar: their syntactic
structures are identical (see Table 3), they map to the same sequence of parts-of-speech
(NN VB DT NN PP VB JJ CC VB JJ NN PP VB IN NN IN DT JJ NN), and even
have the same word-based entropy (4.0374). Yet, many would rate the second text
more complex than the first. Clearly, there is some facet of complexity that depends
on what is said rather than on how it is said; in other words, part of complexity depends
on semantics.

The exact nature of this dependence, however, is not easily defined. In fact, a text
may seem complex to someone unfamiliar with the domain, but simple to someone
familiar with it. A chemist would easily recognize our second text as referring to
barbiturate drugs, and would probably spot a few blatant errors in the description of
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A hyperhygienist mom has set a bucket next to a stainless-steel basin sim-
ilar to the kind used for surgical instruments. Inside of it, immersed in
a disinfectant solution, are a feeding bottle, a spoon, a small dish, and a
teething ring for the baby to chew on. Mommy is nursing her hyperpro-
tected young one, selecting the instruments with a pair of tongs. The latest
do-it-yourself childcare vogue is taking hold among young families.
The whole affair would be edifying if it wasn’t turning comical. Indeed
mom hasn’t got a pair of surgeon’s gloves ready at hand before grandma
can cuddle the tiny tot, and neither does she have a nurse’s cap, lest the
baby should pull at grandma’s unsterilized hair. Further, grandma won’t
spray any disinfectant on the stroller belts, which the child cravingly sucks
on regardless of all those who’ve laid their dirty hands all over the stroller.
Lastly, she’ll ignore that the stroller seat is nearly flush against the ground,
and that the child will thereby inhale the blanket of exhaust fumes lying
stagnant half a meter above the asphalt.
Better safe than sorry, you might say. But not necessarily so. My genera-
tion was always running around with dirty hands because we used to play
in the streets witness the Tour of Italy, waymarked using chalk sticks, and
the orange-soda caps sporting tiny pictures of Guerra and Binda. We’d
stick two filthy fingers in our mouths to whistle. And we did wash our
hands before eating, but then in the event that a piece of macaroni should
fall off the table, we were taught to pick it up and blow on it to make
it perfectly eatable again. If we peeled a knee by accident, we’d rinse it
under an art-nouveau iron fountain. If the doctor pushed a spoon in our
throats, he’d then wipe it clean with a handkerchief and the spoon was
ready for another set of tonsils. The only implement he’d boil on a burner
was the antitetanic syringe, but we were bent more on defying tetanus
than getting pricked with a needle. And yet this untamed sort of lifestyle
was antidotal for us: germs got around at large, and we feared our own
antibodies. Today’s viruses, on the other hand, go hand in hand with the
toddlers of hygienist moms. I know one such mom who had her child
skip the crawling phase altogether. (That’s the phase in which children
will grope around staking out their space by moving on all fours). The
little kid had never touched the ground with his tiny hands, so when he
went to the kindergarten he stuck his hands just about everywhere, then
he sucked on his thumb and got all the neighbourhood germs.
And yet hygienist moms won’t back down: they’re breeding offspring that
ought to live with gloves and respirators.

Exordium

Probation

Confutation

Example

Facts

Thesis

Facts

Opposition

Oth. thesis

Thesis

Thesis

Facts

Epilogue

Figure 4: Argumentative structure for a sample text, as extracted by CICO with a rule
set based on rethoric roles and constructions.
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malonylurea — a feat impossible to the authors. Thus, is this kind of complexity
objective? Probably not, but we can still measure it in reference to the knowledge
body of a standard reader. Notice that we do not need an average reader; all we
need is a reader that is perfectly objective, repeatable, immune to fatigue, boredom,
or distraction, and a few other characteristics that make finding such a reader a hard
goal.

As a more convenient approximation, we will resort to a well-known semantic
resource, the WordNet database [Fel98] developed at the Princeton University’s Cog-
nitive Science Laboratory. In WordNet, English nouns, verbs, adverbs, and adjectives
are organized into synonym sets (synsets for short), each representing one underlying
lexical concept. Different relations link the synonym sets: among them, synonymy,
antonymy, hyperonymy, hiponymy, holonymy, meronymy, etc. Figure 5 shows a (mi-
nuscule) fragment of the WordNet network surrounding Malonylurea.

Such a rich structure offers numerous measurement opportunities. For example,
if we hypothesize that using a very specialized language adds to the complexity of
the language, we can give a rough estimate of the lexical specialization of a text by
summing, for each noun in the text, the length of the shortest hyperonymy path from
the word to a root word of the hyperonymy hierarchy (called unique beginners in
WordNet’s terminology). For example, the hierarchy for Malonylurea is

Malonylurea → acid → compound → substance → object → entity

that gives a specialization score of 6 for Malonylurea. Measures based on similar
principles, but on different relations, can also be defined for adjectives, verbs, and
adverbs. This kind of characterization, however, is too simplistic for our purposes:
suffice to say that many simple words are found at the leaves of deep hierarchies, e.g.

salt (table salt) → flavorer → ingredient → food product → food → sub-
stance → object → entity

giving a score of 8 (higher than that for Malonylurea!) for the quite common table
salt. On the other hand, if we base our score on the frequency of occurrence of words
in standard corpora, we end up measuring again an entropy-based measure, that we
have already discussed in the previous section.

Clearly, a more sophisticated approach is needed. Given a certain word w, we
define the active subnet (up to n) of w the set of all the synsets that can be reached
(with a path of length at most n) from any synset containing w in the appropriate
syntactic category. We denote this set with An(w). Formally,

A0(w) = {s ∈ W | w ∈ s}

An+1(w) = An(w) ∪ {s ∈ W | (s′ → s) ∈ W ∧ s′ ∈ An(w)}
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Mary had a baby...
Guaranteeing satisfactory results...

When you can measure...
Malonylurea is a compound...

Figure 6: |An(t)| plotted for four sample texts.

where we indicate with s ∈ W the fact that synset s appears in the WordNet database,
and with (s′ → s) ∈ W the fact that the database contains at least a relation linking
s′ to s. In other terms, An(w) represents the set of all the concepts that are “closely”
(depending on n) related to w. We can merge the active subnets of the words in a text
t, by computing

An(t) =
⋃

w∈t

An(w)

An(t) represents the set of all the concepts “closely” related to t; due to the presence
of the set-union operator, |An(t)| tends to grow rapidly with n when t contains terms
from weakly correlated domains, whilst the growth is slower for texts focusing on a
well defined domain. So, if t is a scholarly work on the role of barbiturate drugs in
the cure of sleep disorders, we can expect An(t) to converge rapidly on the domain
of chemistry and medicine, and stabilize there. On the other hand, if t contains mag-
niloquently flourished prose, allegories, or euphemisms, An(t) would probably grow
more slowly, but converge to a much larger subset of the whole WordNet.

221



Complexity in Language and Text

Figure 6 plots |An(t)|, for growing values of n, in the case of four of our sample
texts. The measures were obtained by counting the number of synsets in WordNet
connected to at least a word of t by a path of length at most n that does not include
any hyponymy link.

As can be observed in the figure, what we would judge as simpler texts (like our
“Mary had a baby” sample) tend to produce large connected subnets, and thus have
higher values for |An(t)|, while more complex texts (like our “Malonylurea is a com-
pound” sample) tend to remain confined to smaller, more specialized subnets, and thus
have lower values for |An(t)|. The two other samples, which intuitively have inter-
mediate complexity, lie between these extremes. This technique appears to capture a
significant aspect of complexity, that is not easily characterized through other metrics
— a facet of complexity that is directly related to the semantic content of a text.

In order to more easily manage this measure, we define a punctual version as
follows:

PA(t) =







3·103

|A5(t)|−|A2(t)|
if |A2(t)| 6= |A5(t)|

0 otherwise

In other words, we take the reciprocal of the slope of a linear approximation of a frag-
ment of |An(t)| as an approximated indicator for the whole function. The fragment
chosen is the part of the curve that lies between the values 2 and 5. This choice,
which is not essential, is motivated by the consideration that the semantic link be-
tween two words connected by a path in WordNet becomes weaker when the paths
become longer. The factor 1000 that appears in the formula is only used to adjust
the magnitude of the result. The numeric values of PA(t) for our sample texts are as
follows:

Mary had a baby. . . 1.131
Guaranteeing satisfactory results. . . 2.817
When you can measure. . . 3.746
Malonylurea is a compound. . . 7.282

Once again, PA(t) can be taken as it is, as a factor for the absolute complexity of a text,
or normalized by some measure of size (in our case, |A0(t)| is a reasonable choice) to
measure density-like complexity.

Let us now consider which of our axioms are satisfied by these measures. Axiom
Zero is clearly satisfied with An(∅) = ∅, |An(∅)| = PA(∅) = 0. Axiom 1 is also
satisfied. In fact,

∀t, t′, t ⊆ t′ ⇒ An(t′) = An(t) ∪An(t′ \ t) ⊇ An(t)
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it follows that
∀t, t′, t ⊆ t′ ⇒ |An(t)| ≤ |An(t′)|

thus proving punctual monotonicity. PA(t), instead, is not monotonic, since the slopes
of two linear functions do not depend on their relative magnitude. As a counter-
example, consider the case in which t ⊆ t′ with |A2(t)| = 1000, |A5(t)| = 2000,
and |A2(t

′)| = 3000, |A5(t
′)| = 5000. Then, PA(t) = 3, but PA(t′) = 1.5, thus

disproving monotonicity.
Similar arguments hold with respect to compositionality. An(t) is compositional,

taking the append operator as T and set union as M :

An(T (t, t′)) = An(t · t′) = An(t) ∪ An(t′) = M(An(t),An(t′))

Unfortunately, neither |An(t)| nor PA(t) are compositional, due to the fact that the
result of the set union operation on subnets depends on the actual overlap between the
subnets. To prove that the measures are not compositional, it is sufficient to consider
the case t = malonylurea, t′ = alkapton: we haveA2(t) = {malonylurea, acid, compound}
and A2(t

′) = {alkapton, acid, compound}, thus

4 = |A2(t · t
′)|

= |A2(T (t, t′))|

= M(|A2(t)|, |A2(t
′)|)

= M(3, 3)

= M(|A2(t)|, |A2(t)|)

= |A2(T (t, t))|

= |A2(t · t)|

= 3

The absurd conclusion 4 = 3 proves that no such M can exist, and thus that |An(t)|
(and PA(t), as a consequence) is not compositional. The first and last equality in the
proof above also gives evidence that the measures satisfy classifiability. The definition
An(t) =

⋃

w∈t An(w) shows trivially that our measures are unstructural and order-
independent, since the active subset of a text t does not depend on the order in which
the words w are taken.

Clearly, the very idea of a metric for complexity based on the semantic character-
istics of a text opens the way to a huge number of possible metrics for special cases.
We do not have the space here to even attempt an analysis and a categorization of
the possible metrics, but it is worthwhile to remark that semantic metrics can also
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Axiom
Metric 0 1 2 3 4 5 6 Scale

Readability
R, G, G′ X X X interval
Information content
H on letters & words X X X X ratio
H on parts-of-speech X X X X ratio
Hn, n > 0 X X X ratio
Structural
∑

s∈t C(s), where C(s) = |N |, X X X X X X absolute (|N |),
maxn∈L dn, or

∑

n∈L log2 dn ratio (others)
Semantic
|An(t)| X X X X X absolute
PA(t) X X X X ratio

Table 5: Axioms satisfied and measurement scales for each of the proposed metrics.

cover structural aspects as well as unstructural ones. For example, [ZGM01] presents
a technique for synthesizing a set of logic formulas that is equivalent to a set of natural
language requirements for a software system. Such a description in logic terms — that
is clearly independent from the particular syntax and lexicon used in the original text
— can be measured in terms of nodes in a SP-tree representation of the formulas, or
in terms of number of conjuncts, etc.

These and similar techniques, however, are too specialized to be applicable to
totally general, unrestricted texts on which no assumptions can be made. Still, in
many practical applications these ad hoc metrics are usually more convenient and
more significant than the generic metrics that we have discussed so far.

3.5. Summary

It is now time to summarize the various metrics that we have proposed, together with
the axioms they satisfy.

As can be observed in Table 5, the various metrics satisfy different axioms, and
produce results on different measurement scales. In defining a Factors-Criteria-Metrics
system for complexity, specific metrics can be chosen among those in Table 5 in such
a way as to preserve (if possible) desired properties.

Ideally, a global evaluation of complexity should take into account all the facets
that we have discussed, and possibly others, by computing an index based on at least a
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metric from each group, and by assigning weights to the different measures according
to the needs that such an index is intended to satisfy.

In particular, any good characterization of complexity should include at least a met-
ric to cover structural aspects (Axiom 4), and at least another one to cover unstructural
aspects (Axiom 5). Also, there is a need for some order-dependent factor to intervene
in the characterization, to avoid unpleasant results like those we found for readability
at the end of Section 3.1. As we have seen, most metrics proposed in the literature are
order-independent, and satisfy Axiom 6. Sequence-based information content met-
rics, structural metrics (on order-dependant structures, e.g. syntactic structure), and
semantic metrics for special cases are among the few metrics that do take ordering
into account; at least one of these should be included in a factor for complexity.

While all of the metrics that we have proposed can be easily and efficiently com-
puted by automatic tools, only a few of them have good computational properties,
and satisfy axioms 0 (Zero), 1 (Monotonicity), and 2 (Compositionality). Indeed,
only structural metrics satisfy all three axioms, and even then, only in few cases, and
only for composition functions that are accurately construed according to the specific
structures that are being measured.

A good characterization of complexity should also include measures on different
levels. The entropy measure H on characters can provide an indication of lexical com-
plexity, as can the various readability metrics. On a higher level, |An(t)| and PA(t)
ignore the particular words used to express a lexical concept, and measure character-
istics of the concept itself instead. Entropy measures on parts-of-speech and structural
measures on syntactic structure ignore the lexical concepts entirely, and concentrate
instead on how statements are built from their constituents. Measures on the argu-
mentative structure disregard English syntax altogether, and only consider the way in
which statements are used in building an argument.

Clearly, each of these levels deserves its own notion of complexity, and all of them
contribute to the global complexity of a text.

4. Conclusions

At the beginning of this work, we asked ourselves why “Mary had a baby” was intu-
itively simpler than Lord Kelvin’s thoughts on measurement. After our discussion, we
still do not have a good, single answer to that question.

What we have presented, though, is a set of conceptual, methodological, and tech-
nical tools for building answers to that question. The representational theory of mea-
surement provided us with a theoretical framework to understand the essence of mea-
surement and the significance of the results that can be obtained, according to the
various measurement scales. The Factors-Criteria-Metrics model suggested how we
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could compose disparate facets of complexity, and several possible metrics for each
facet, into a uniform view. We also presented a number of specific metrics, either al-
ready known in the literature or novel, that attempt to measure some of the facets in an
objective, repeatable, and automatic way. There is no need to stress here that all these
three characteristics are indispensable to obtain metrics that are useful in practice and
provide significant measures.

We also developed a system of axioms, that can guide us in selecting the metrics
that are more appropriate in certain contexts, while having a precise understanding of
their mathematical behavior.

The final step along this path — defining a metric for complexity as such — is
not taken in this work. The reason is clear: we do not believe that there is a sin-
gle complexity attribute that can characterize a text. Rather, many complexities can
be defined, (e.g., lexical complexity, syntactic structure complexity, argument com-
plexity, etc.), aimed at measuring different qualities of a text. This view is supported
by the observation that all these attributes are largely independent of each other: the
same text can feature a varied and flourished lexicon, and at the same time present
an elementary syntactic structure. Politician’s speeches are commonly acknowledged
to present challenging syntactic structures, with very little information content. Four
years old children’s attempts to convince their parents that it is not bed time YET,
can be syntax-impaired and use elementary lexicon, and still make perfectly good and
quite complex arguments.

What is left then of our purpose of measuring complexity? We can still define a
somewhat arbitrary “complexity score”, say through a weighted sum of the measures
for various facets, much in the same way as a decathlon athlete builds his or her
score by running, jumping, swimming, etc. Naturally, the cumulative score does not
say much on how good the athlete is at any particular activity, but it is still used
conventionally to compare athletes. On the other hand, we could instead accept that
complexity is not a single number, but a series of numbers. This is what we do with
color; to specify a color, three numbers are generally used (e.g., red, green, and blue
components). These measurement vectors are certainly more informative, but more
difficult to manage, than arbitrary scores.

We have to leave the final choice to the particular application. Still, a rigorous and
mathematically sound method like the one we presented will allow an informed and
well thought out decision to be made, whereas in the past measurement of complexity
has been often seen, we could say, as The Art of Assigning Random Numbers to
Random Phenomena, and Making a Sum in the End. Complexity measurement is
a fascinating, thought-provoking and practically relevant subject, and it deserves the
most precise and rigorous treatment that we can attain.
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The linguistic resources and the software programs developed in support of the metrics pro-
posed here are freely available for academic use. The relevant archives, together with links
to other related software packages, can be found on the World Wide Web at the address
http://www.di.unipi.it/˜gervasi/TCBook/.
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