
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:113–133 (DOI: 10.1002/spe.430)

Lightweight validation of
natural language requirements

Vincenzo Gervasi1 and Bashar Nuseibeh2,∗,†

1Dipartimento di Informatica, Università di Pisa, I-56125 Pisa, Italy
2Computing Department, The Open University, Milton Keynes MK7 6AA, U.K.

SUMMARY

In this paper, we report on our experiences of using lightweight formal methods for the partial validation
of natural language requirements documents. We describe our approach to checking properties of models
obtained by shallow parsing of natural language requirements, and apply it to a case study based on part
of a NASA specification of the Node Control Software on the International Space Station. The experience
reported supports our position that it is feasible and useful to perform automated analysis of requirements
expressed in natural language. Indeed, we identified a number of errors in our case study that were also
independently discovered and corrected by NASA’s Independent Validation and Verification Facility in a
subsequent version of the same document, and others that were not discovered. The paper describes the
techniques we used, the errors we found and reflects on the lessons learned. Copyright 2001 John Wiley
& Sons, Ltd.

KEY WORDS: natural language requirements; lightweight formal methods; requirements validation

1. INTRODUCTION: LIGHTWEIGHT FORMAL METHODS AND REQUIREMENTS
VALIDATION

The use of lightweight formal methods has recently received increasing attention in the software
development literature [1,2]. In the context of requirements engineering (RE), we use the term
‘lightweight formal methods’ to characterize those methods whose adoption cost is a small fraction
of that of the overall RE process, including training, application and computational costs. Lightweight
formal methods often perform partial analysis on partial specifications only [3]. They do not require a

∗Correspondence to: Bashar Nuseibeh, Computing Department, The Open University, Milton Keynes MK7 6AA, U.K.
†E-mail: B.A.Nuseibeh@open.ac.uk

Contract/grant sponsor: NASA; contract/grant number: #NCC 2-979
Contract/grant sponsor: UK EPSRC (MISE); contract/grant number: GR/L 55964
Contract/grant sponsor: UK EPSRC (VOICI); contract/grant number: GR/M 38582
Contract/grant sponsor: MURST (AI:IA project)
Contract/grant sponsor: EU (RENOIR and PROMOTER 2 projects)

Copyright 2001 John Wiley & Sons, Ltd.
Received 14 August 2000

Revised 26 September 2001
Accepted 26 September 2001

114 V. GERVASI AND B. NUSEIBEH

commitment to translate entire (informal) requirements documents into formal ones, nor to maintain
formal and informal versions of specifications in parallel [4]. Moreover, as requirements specifications
evolve during the early stages of the RE process, lightweight formal methods provide an opportunity
for gradually validating requirements, paving the way for later introduction of more exhaustive and
rigorous analysis if needed.

A number of experiences have been reported on the use of lightweight formal methods. These
range from their application to the very early stages of a development process (such as [5] where
lexical analysis is used to find abstractions in unstructured and uninterpreted text), to design support
systems [6] and reengineering applications on existing code [7]. Others have studied the application
of natural language (NL) understanding techniques to the automatic extraction of models from NL
requirements [8–13]. The application of lightweight methods to the analysis and validation of NL
requirements is particularly appealing, since industrial practice shows that NL requirements are easier
to evolve, maintain and discuss with (possibly non-technical) customers. However, it is often very
difficult to prove properties such as correctness, consistency and minimality about NL requirements.
This paper describes a real case study demonstrating the practical application of lightweight methods
to analyse such requirements. It is not our intention to suggest that the particular techniques used in
this study can be applied to any kind of RE process. Rather, in the vein of [6], we present the results
of the study as evidence to support our position that lightweight methods can be profitably used in RE
processes that deploy NL requirements.

The paper is structured as follows. We begin in Section 2 by introducing our general approach to
the lightweight validation of NL requirements. The approach includes a set-up phase to adapt the
general schema to the particular needs of a specific requirements process, and a production phase,
where requirements are repeatedly checked during the evolution of a requirements document. We then
introduce our case study in Section 3, and provide some background on its origin and its significance.
In Section 4 we describe the application of our framework to the case study and provide a complete
example of the kind of processing that is applied to NL requirements for the purpose of validating
them with respect to a certain set of desired properties. Our findings from the case study are discussed
in Section 5, where the validation technicalities are also discussed in more detail. We reflect on the
lessons we learned in Section 6, and discuss the applicability of our experiences in different—and,
particularly, in industrial—contexts. A short survey of related work and a discussion of future work
conclude the paper.

2. VALIDATING NL REQUIREMENTS

The term verification has traditionally been used to designate checking that a software system conforms
to its specification, and the term validation to designate checking that the specification captures the
actual needs (or the expectations) of its customers [14]. The focus of this paper is on the validation of
software system requirements.

The term validation is also used to indicate checking that a model (of a software system) satisfies
certain internal consistency properties, under the assumption that internal consistency of a software
system is always part of the customer’s expectations. In this sense, validation of a requirements
document is of necessity partial. It is impossible to guarantee that a specification satisfying any fixed set
of properties on the underlying models will cover all the (often unexpressed) user requirements [15].

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 115

In this paper, we treat validation as a decision problem: given a model of a software system and a set of
properties, we want to know whether or not the model satisfies those properties. If not, it is desirable
to provide one or more counter-examples showing how a property was violated. Notice that both the
model and the set of properties are arbitrary, and chosen case by case according to which characteristics
are more important to the customer. As an example, in a hard real-time system, exact timings can
be very important and the precision of results from computation may have to be sacrificed for the
timeliness of the result; on the other hand, an accounting system must be exact and the time needed
to complete a computation is only of secondary concern. In these cases, different user needs‡ lead to
different views of validation, with different properties required to be satisfied by different models.

The aim of our study is not the validation of the particular requirements specification described in
Section 3, but rather to experiment with the use of lightweight formal methods in an RE validation
process based on NL requirements and inspections.

Our approach is structured into two parts: a set-up phase and a production phase. The two phases,
and their relationships, are depicted in Figure 1. The set-up phase includes the following activities.

1. Defining a style a structure and a language for the requirements document. This step can
be undertaken either normatively, i.e. as the production of a prescriptive style manual for
the requirements document (and in this case a syntax-guided editor can be used to support
requirements writing, as in [16]), or descriptively, i.e. as an adaptation of the capabilities of a
parsing tool to an already existing document written in a defined style (as in the case of the
experience we report in this paper).

2. Selecting desirable properties to check. Which properties of a certain document or system
described in a document are ‘interesting’ depends on the particular context of the analysis. As is
common with lightweight formal methods, partial validation is usually acceptable at this stage.

3. Defining one or more models against which the properties selected in the previous step can be
checked. Properties are always relative to models, i.e. abstractions of the document or of the
system described in it, which collect in an analysable structure the information needed to check
the property. For example, a connection property among system components can be checked
against a model describing all the communications among system components.

Once the set-up phase has been completed, the production phase (below) can be iterated at any stage
of development of the requirements—without incurring any significant additional cost, as we will show
later. The production phase of our approach includes the following.

4. Pre-processing the requirements document, to handle format, structure and typographical details,
and to translate the requirements document to a canonical form amenable to later processing.

5. Parsing the NL text of the requirements, leading to an analysable representation of the semantic
content of the text. Again, parsing can be (and usually is) partial, to help reduce the cost of
validation, as long as this does not interfere with the collection of the information needed to
perform the validation.

6. Building the models defined in step 3 above, using the information collected during the parsing
process. It is possible to build models of the requirements document (for example, distribution

‡Or even different priorities for similar needs.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

116 V. GERVASI AND B. NUSEIBEH

Legend

activity

artifact

enables

human step

automatic
step

Define style &
language

Define models
to extract

Define validation
properties

Parse trees

Models

Results of
validation

Setup phase Production phase

SRS
document

Pre-processed
text

Figure 1. Set-up phase and production phase in our approach.

of topics among sections of the document) and of the system described by the requirements (for
example, a model of the communication paths in a distributed system).

7. Checking that the models satisfy chosen properties. As in the previous step, it is possible to
check properties of the document (in our previous example, consistency of topics inside a
single section) and of the system (for example, the existence of disjoint components in the
communication paths model).

8. Evaluating findings and revising the requirements specification accordingly. It is particularly
important that the validation checks provide as much detail as possible about the point of
and the reason for a failure (i.e. about the circumstances in which a validation property was

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 117

violated). Like the counterexamples provided by other formal methods, this information helps
the requirements engineer to identify and fix errors that cause violations.

The process above offers a number of advantages in an industrial setting. Steps 1–3 are reusable
across projects, as individual organizations tend to adopt defined internal standards for document style
(step 1) and quality control (steps 2 and 3). Moving these standards into a tool is an effective way to
accumulate the organizational knowledge and expertise in a safe and structured way, and to have it
applied in a deterministic and reproducible manner during the production phase. Also, steps 4–7 are
entirely automatic, leaving step 8 only for the requirements engineer to consider at each iteration.

3. THE CASE STUDY

We studied a fragment of a NASA Software Requirements Specification (SRS) for the Node Control
Software (NCS) on the International Space Station [17]. The choice of this particular document was
appealing because we assumed it to be of high quality (being the twelfth release of those requirements,
and subject to many inspections and revisions), and because parts of it had already been analysed using
different techniques, in related studies [3,18,19].

The document, 250 pages long, is written mainly in narrative English, with several tables and the
occasional schematic diagram interspersed in the text. It is structured by NCS functions (e.g., Telemetry
Control, Environmental Control, Time Management, etc.). Each function is described in terms of
individual constituent components (e.g., Environmental Control includes pressure monitoring, air fan
control, fire and smoke detection, etc.). Each of these components, in turn, is first introduced in general,
narrative terms, and then detailed by describing its inputs, outputs and expected behaviour. This second
part (called ‘engineering requirements’) constitutes the official (and definitive) specification of the
NCS, while the narrative part is provided as explanatory material. Cross-references and references to
external documents are used in places to mandate standard compliance and uniform behaviour among
different functions.

The three-page fragment (Section 3.2.2.1.3 in [17]) we chose to analyse described one of the
basic components of the Environmental Control function—Cabin Pressure Monitoring. The NCS
continuously monitors the cabin pressure and issues alarms if the measured pressure exceeds operating
limits. This function can be disabled and enabled as part of Fault Detection, Isolation and Recovery
(FDIR) procedures. Operating limits can be changed during the system’s operation. The NCS interfaces
with the physical world through input lines connected to sensors and output lines connected to
actuators; interaction with the rest of the system is through a shared serial bus carrying commands
and state information. Precise timings are given for most (but not all) of the system’s operation, e.g.
to ensure that operating limits are exceeded across a certain number of samplings before declaring an
alarm and to ensure that alarms are issued in a bounded time when a problem is discovered.

Moreover, certain procedures relevant for the bus protocol are specified. For example, commands
that are invalid in particular circumstances are to be ignored, but a rejection indication must be provided
to the originator of the command. Similarly, commands that may be dangerous are accepted only after
a separate specific confirmation command is received by the subsystem.

Most other subsystems in the NCS are comparable in structure and complexity to the Cabin Pressure
Monitoring function we analyse in this case study, while a few are considerably more complex. Many

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

118 V. GERVASI AND B. NUSEIBEH

subsystems could be validated in isolation using the techniques we describe in the next sections.
However, we do not explore the issue of validating the entire system in this work. Given the substantial
size of the NCS, even the simplest integration tests would have required more domain knowledge than
we possessed.

4. APPLICATION OF THE APPROACH TO THE CASE STUDY

In this section we describe the details of our experience with the case study, according to the structure
of the process outlined in Section 2. Since—due to logistic considerations—we had to work alongside
NASA’s standard verification and validation process, we only ran a single iteration of our production
phase. Also, we analysed three major revisions of the requirements document. The first version
was provided to us at the beginning of the study, while two other subsequent versions—developed
independently from our preliminary findings on the first version—were released before its end. Our
analysis was performed in ‘batch mode’: the requirements were provided to us in their final form; no
interaction with the developers took place during our analysis. This is not the best possible setting for
lightweight validation, which is actually better suited for interactive use (thus in a sense performing
continuous validation) during requirements evolution, possibly after every minor change. However,
this unfavourable setting offered the opportunity to compare our findings with those of a traditional
validation and verification (V&V) process as performed by NASA (mostly inspection). We describe
the results of this comparison in Section 6.

Our approach offers more flexibility in writing and analysing requirements than the eight steps listed
in Section 2 suggest. Indeed, we expect that the approach be instantiated to deal with the peculiarities
of each different organization. Among different instantiations, some reuse of language, models and
properties can be achieved. The extent of this reuse may be almost total for similar projects of the same
organization, may become smaller, but still substantial, for different organizations in the same industry
or may be absent or minimal in cases where two organizations operate in different industries. In our
case study, we simulated the initial introduction of our approach into an organization. This is the most
extensive instantiation that can be made, since no reuse is possible. First, we instantiated the steps of
the set-up phase as follows.

1. Defining a style, structure and language. The NCS specification exhibited a consistent style and
structure (conforming to DOD-STD-2167A), and was of overall good structural quality [20].
The language used in the detailed descriptions of each function was concerned mainly with
(fairly complex) temporal ordering of input and output events, but also included user interface
and other technical issues§ that influenced the kind of language used. On the other hand, the
narrative text was much more elaborate from a linguistic point of view, but since it was intended
merely as an explanation of the technical text in the engineering part (that served as the definitive
reference), it added no information on its own, and thus was not relevant to our analysis.

§As an extreme example, some of the functions described had to behave differently depending on the orbital position of the
space station, as expressed by an orbit diagram included in the text. It is typical of lightweight formal methods (and thus of
partial validation) that none of the models really need to ‘understand’ the details behind such a diagram, and in our case study
we could simply treat a change in orbital position as an unexplained external event.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 119

We adopted a shallow parsing technique for extracting information from the NL text. Shallow
parsing is a lightweight text analysis method that performs a (potentially) partial analysis of
the linguistic structures in a text. We used the Cico domain-based parser [21], a tool based on
fuzzy matching of sentence fragments to templates, with a rule set specifically developed for the
language used in the NCS specification. In domain-based parsing, parse trees do not describe
the syntactical structure of a sentence, but rather its content according to structures that are
significant in the domain. Building a rule set for the domain of our case study required no more
than two days of work by one of the authors. Given the highly specialized language used in the
document, 30 rules (in addition to the generic rules already provided by the tool) were sufficient
to obtain complete parsing of three different revisions of the document.

2. Selecting desirable properties to check. Given that most of the requirements dealt with assigning
certain values to specific output lines upon the occurrence of some event, we decided to perform
‘black-box’ validation of the requirements (i.e. we only validated the externally-observable
behaviour of the system). In particular, we were interested in the possible values that each output
line could assume. For example, we wanted to be sure that output lines would never be left in
undefined states, due to missing initializations or to requirements conflicting on their values. We
also wanted to be sure that the system behaviour was defined even for unusual combinations of
values from the input lines and commands from the command bus. Some of the properties we
selected at this stage (those that uncovered problems in the specification) are presented in more
detail later. Formally, input and output lines were described in terms of associated data items,
whose value could change outside system control (for input lines) and whose assignment caused
side effects (for output lines).

3. Defining models for checking selected properties. All the properties we defined in the previous
step could be checked against the four models described below.

• The kind of data item (KIND) model, distinguishing constant values from internal
variables and I/O items. Formally, ∀d ∈ DataItems, kind(d) is either CONST (a constant
value), FLAG (an internal variable) or IO (an input/output line).

• The default values (DEFVAL) model, showing only the default or initialization value of
data items, as declared in the requirements. Formally, ∀d ∈ DataItems, defval(d) is either
UNDEF (no initialization value was specified by the requirements) or a set of specific
literal values¶.

• The value space (VALSPACE) model, collecting all the assignments described in the
requirements to determine the space of all the possible values for a data item. Formally,
∀d ∈ DataItems, valspace(d) is the set of all values whose assignment to d or whose
comparison with the value of d is mentioned in the requirements.

• The event–condition–action table (ECATAB) model, collecting all the possible actions of
the system, together with the conditions and events that cause their execution. Formally, ∀r

¶No initializations with non-literal values were specified in our requirements, but, if present, they could have been treated as an
assignment to be performed unconditionally upon a ‘Boot’ event in the ECATAB model. Notice also that although defval(d) is
specified as a set, a double initialization with different values would have been regarded as an error in the requirements (∀d ∈
DataItems, #defval(d) = 1 was one of the desirable properties). In our case study, this property was never violated and defval(d)

always resulted in a singleton.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

120 V. GERVASI AND B. NUSEIBEH

∈ Requirements, ecatab(r) = {〈events, conditions, actions〉} where events and conditions
are predicates on the value of members of DataItems, while actions is a set of actions
(either assignments to members of DataItems or the special actions ‘Acquire d’, signifying
the assignment to d of a value read from an input device and ‘Reject d’, indicating the
rejection of a command according to the bus protocol, with d ∈ DataItems), as specified by
requirement r . Intuitively, ecatab(r) = {〈e, c, a〉} can be read as ‘Requirement r specifies
that, upon occurrence of the event e, if the condition c is satisfied, the actions in a shall be
executed’.

We used the Circe environment [21,22] to provide tool support for the production phase. Circe
is a Web-based, component-based environment for the automated analysis of requirements written
in natural language (using Cico for the parsing stage). The environment supports the extraction of
models from the requirements, their validation and the collection of metric data about the requirements
document, the system described in it and about the requirements writing process itself. It has been
used as a requirements writing support system in a number of industrial and academic projects, but
its application to the analysis of pre-existing requirements is novel. Using Circe, steps 4 to 7 of our
approach were implemented as follows.

4. Pre-processing the requirements document. The text of the requirements was simply copied and
pasted from the original Microsoft Word document into our tool and needed very little manual
preprocessing (e.g., commenting out section titles and changing enumerated lists to bulleted
lists). Such preprocessing could have been performed automatically if the document size had
required it.

5. Parsing of the NL text. The parsing technique we adopted required that a glossary be defined
containing domain-specific terms. This task was accomplished by manually populating the
glossary with:

• the names of the various data items from the input/output tables included in the
specification document;

• the name of the system itself (‘NCS’); and
• a few other names that were used in the requirements (even though they were not declared

as input or output data or command names).

The parsing process implicitly provided a language validation of the requirements. No spelling
or syntactic errors were found, supporting our assumption that the requirements were of good
syntactic quality [23] with respect to the language defined by our parsing rules. Obviously, only a
partial assessment of the semantic quality defined in the same work was performed, by formally
validating the models as described below.

6. Building models. The task of building the four models defined in step 3 was carried out
automatically by a small number of modellers, i.e. software components that are part of
Circe’s modular architecture. The logic needed to build these models, implemented as additional
modules of the existing tool, was less than 100 lines of AWK [24] code.

7. Checking that the models satisfy chosen properties. The properties we selected were analysed by
a number of specialized validators (also implemented as components for Circe), each consisting
of a few lines of code only. Many of the chosen properties, mostly concerning ‘obvious’

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 121

completeness and consistency criteria, were never violated and are not reported here. Violations
that led to the identification of real problems in the specification are discussed in some detail in
Section 5.

Example. To illustrate the operations in steps 4–7 above, we now present an example of how a single
requirement from the SRS was actually processed. Consider the following requirement, taken verbatim
from the original document:

d. If the ACS N1S2 Cabin Pressure FDIR State is equal to ENABLED, then upon receipt of ACS
N1S2 Cabin Pressure HW Data less than the Node 1 Cabin Pressure Lower Limit (initial:
13.9 psia) for 3 consecutive acquisitions, the NCS shall within 1.1 seconds:

(1) Set the ACS N1S2 Cabin Pressure Lower Limit Warning State (initial value: FALSE)
to TRUE, and

(2) Issue a warning level alarm (message: “Node 1 Cabin Pressure Lower Limit
Warning Violation”) in accordance with the section on “annunciate alarms”.

Pre-processing of this text (step 4) only required minimal intervention, mainly to substitute
enumerated list markers with a different markup and to change the format of the text from the
original one (Rich Text Format) to a simple ASCII version. After pre-processing, the requirement
above appeared as follows:

If the ACS N1S2 Cabin Pressure FDIR State is equal to ENABLED, then
upon receipt of ACS N1S2 Cabin Pressure HW Data less than the Node 1
Cabin Pressure Lower Limit (initial: 13.9 psia) for 3 consecutive
acquisitions, the NCS shall within 1.1 seconds
- Set the ACS N1S2 Cabin Pressure Lower Limit Warning State (initial
value: FALSE) to TRUE, and
- Issue a warning level alarm (message: ‘‘Node 1 Cabin Pressure Lower
Limit Warning Violation’’) in accordance with the section on
‘‘annunciate alarms’’.

The parsing process of step 5 analyses this pre-processed text, producing the parse trees shown in
Figure 2 (in which some data item names have been abbreviated for clarity of presentation). Recall that
in domain-based parsing, parse trees describe the content of the requirement according to structures
that are significant in the domain and not according to traditional syntactical structures. For example,
the root of the main tree describes a causal dependency (DEPC) between a condition—as expressed
by the relational operator (RELOP) ‘equals’ between Cabin Pressure FDIR State and ENABLED—
and an action, starting at the DEPT node. That action is itself a temporal dependency (DEPT)
between the conditional receipt (CONDRECEPIT) of a Cabin Pressure HW Data less than the Cabin
Pressure Lower Limit lasting (EVTFORSPAN) for at least three sampling times (TSPAN). As soon
as the dependency is satisfied, the block of actions starting at the DOOP node, which corresponds to
points (1) and (2) in the original requirement, is executed. Notice also how incidental information like
declarations of default values has been parsed into distinct trees. Details of this parsing technique can
be found in [22].

Models are built from such a forest of parse trees (step 6) by the modellers developed in the set-up
phase. Modellers can extract information directly from parse trees or from models synthesized by other

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

122 V. GERVASI AND B. NUSEIBEH

DEPC

RELOP DEPT

EVTFORSPAN DOOP

CONDRECEIPT TSPAN

TSPAN CONJ

SET STANDARDEF

SECTION

WITHIN

CP FDIR state
equals

CP HW data

NCS

Warning level
alarm

TRUE CP Lower Limit
Warning state

“Node 1 Cabin
Pressure Lower
Limit Warning

violation”

“Annunciate
alarms”

secs 1.1

Less
than

CP Lower
 Limit

3 sampling

ENABLED

ISSUEMSG

UNITVAL

DEFAULTVAL

CP Lower
Limit

13.9 psia

DEFAULTVAL

CP Lower Limit
Warning state

FALSE

Figure 2. Parsing trees for the sample requirement.

modellers. In our example, the DEFVAL and VALSPACE models are populated directly from the parse
trees giving‖

defval(CP Lower Limit Warning state) ⊇ {FALSE}
defval(CP Lower Limit) ⊇ {13.9 psia}

‖We use the notation model ⊇ {value} here to signify that the model contains (in the sense of set inclusion) the value shown,
among others. In our case, more values will be added to the model from the parsing trees of other requirements in the SRS.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 123

valspace(CP FDIR state) ⊇ {ENABLED}
valspace(CP Lower Limit Warning state) ⊇ {FALSE, TRUE}

In particular, the DEFVAL model is obtained directly from the two DEFAULTVAL trees∗∗ in
Figure 2, while the VALSPACE model is obtained from the various comparison and assignment
subtrees (e.g., RELOP, SET, etc.), selecting only those that include literal values and including the
default assignment already computed by the DEFVAL model.

Event–condition–action tables are computed in a similar way, and the resulting models for our single
requirement d is:

ecatab(d) = 〈 {CP HW data less than CP Lower Limit for 3 sampling},
{CP FDIR state equals ENABLED},
{SET CP Lower Limit Warning State to TRUE;
ISSUE Warning Level Alarm “Node 1 Cabin Pressure etc.”}

〉
whose interpretation coincides largely with the original requirement, once we ignore temporal details,
initial values and cross-references. If the entire specification of the Cabin Pressure Monitoring function
had consisted of our sample requirement only, many validation properties (step 7) would have been
violated. For example, the CP FDIR state that is mentioned in the requirement has no default value
(first violation) and it only has a single possible value (second violation) since it is neither assigned to
nor compared with the corresponding DISABLED value in this requirement. Indeed, such assignments
and comparisons are included in other requirements in the SRS, and both the definition and the use of
that particular data item in the specification are correct and consistent.

5. FINDINGS OF THE VALIDATION

In this section we present our actual findings from the case study. Each finding is introduced first by
presenting the formal property that was violated and, where applicable, the actual model on which
the property failed, then by investigating the causes of the violation and finally by suggesting possible
remedial actions.

Finding 1. As mentioned above, the VALSPACE model collected all the values mentioned in the
requirements as assignable to each data item, either as default values or by explicit statements. One
of the properties we wanted to verify on this collection was simply that every non-constant data item
had more than a single possible value, or

∀d ∈ DataItems, kind(d) = CONST ⇒ #valspace(d) � 2

We found six different data items (listed in Table I) that did not satisfy this simple property. Closer
inspection triggered by this finding revealed that several data items whose labels started with ‘ACS

∗∗Notice that in defval(CP Lower Limit) the default value is actually represented as a pointer to the UNITVAL (value with a
measuring unit) subtree of the corresponding parse tree. We use the unparsed representation here to simplify the notation. We
use the same convention for the ECATAB model.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

124 V. GERVASI AND B. NUSEIBEH

Table I. Data items failing VALSPACE validation.

Data item name (d) valspace (d) Reason

“ACS N1-2 Cabin Pressure Lower Limit
Warning State”

{TRUE} Synonym with “ACS N1S2 Cabin Pressure
Lower Limit Warning State”

“ACS N1S2 Cabin Pressure Upper Limit
Warning State”

{FALSE} Synonym with “ACS N1-2 Cabin Pressure
Lower Limit Warning State”

“High Pressure Warning Level Alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Upper Limit” alarm

“Low Pressure Warning Level Aalarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Lower Limit” alarm

“Upper Limit Warning Level Alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “High Pressure” alarm

“Lower Limit Warning Level Alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Low Pressure” alarm

N1-2’ were synonyms to other data items whose names started with ‘ACS N1S2’—with the N1-2 label
(probably) left over from previous releases. We had originally interpreted these as distinct data items,
as the SRS document contained many other distinct data items with only slight variations in their
names. Once equivalent names had been declared as synonyms, the corresponding data items passed
the validation check.

Finding 2. We also had to revise our understanding of the alarm handling by the system. The document
used the wording issue an alarm to indicate entrance into an alarm state, and set alarm to “return to
normal” to indicate exiting from an alarm state. We had originally taken these as unrelated operations.
Inspection of the relevant section of the SRS document (that was not referenced in the requirement)
confirmed that issuing an alarm was the operation dual to setting it to normal and should be interpreted
as setting an alarm to “in alarm”—a change in interpretation that was reflected by a simple update of
the parsing rule for issue in our rule set.

Finding 3. Another issue related to alarms was that the SRS referred to the same alarm in different
ways. For example (letters refer to requirements in the SRS; we only quote the relevant fragments
below):

d. (. . . the NCS shall. . .) issue a warning level alarm (message: “Node 1 Cabin Pressure Lower
Limit Warning Violation”)

e. (. . . the NCS shall. . .) set the lower limit warning level alarm to “return to normal”
j. (. . . the NCS shall. . .) set the low pressure warning level alarm to “return to normal”

There was potential confusion in the first requirement (d, the one we used as an example in Section 4)
between the identity of an alarm (a system design issue) and the associated warning message (a user
interface issue). Again, inspecting the document with this finding in mind confirmed that the three

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 125

different designations above were indeed referring to the same entity. The same problem also occurred
in three other requirements and correcting it reduced the total number of alarms from six to two.
Tabulation of alarms, as for other I/O items, may have avoided such confusion.

Finding 4. Once we resolved issues in the VALSPACE model, the DEFVAL model became amenable
to further analysis. So, we tested the model for the property:

∀d ∈ DataItems, defval(d) = UNDEF

which states that each data item should have a declared default value. Four items did not satisfy this
property: the two alarms discussed above, the reported Cabin Pressure value and the Confirmation
Command Rejection Indicator (a flag of the command bus protocol). We already knew that the default
state for all alarms was ‘return to normal’ (i.e. no alarm), but the other two data items could potentially
provide false information if read before the first assignment.

Finding 5. A better understanding of these potentially dangerous conditions was gained by looking
at the ECATAB model. This model shows which actions (A) the system performs when a certain
event (E) occurs, and which conditions (C) must hold for the actions to be performed. The ECATAB
model synthesized by our tool from the NL text of the requirements is shown in Table II, where we
substitute abbreviations for the very long data and command names used in the SRS document. Table II
uses a tabular notation inspired by the SCR notation [25]: for each requirement r , and for each triple
in ecatab(r), conjuncts in the events predicate are marked with ‘@T’ (read: ‘becomes true’) or ‘@F’
(read: ‘becomes false’) if they are negated; conjuncts in the conditions predicate are marked with ‘T’
(read: ‘is true’) or ‘F’ (read: ‘is false’) if they are negated; elements of the actions set are explicitly
listed under the Actions heading.

For example, the row labelled d in Table II may be read as ‘when the read Pressure (P) is lower than
the Lower Limit (LL) for three sampling cycles, if FDIR is ENABLED, then NCS shall set the Lower
Limit Warning State (LLWS) to TRUE, and set the Lower Limit Warning (LLW) to “in alarm”. This
row corresponds to the requirement that we used as an example in Section 4.

This table passes the usual consistency checks; e.g., disjointness and coverage, under the customary
one-input assumption [26]. This assumption states that exactly one variable changes value between the
executions of two sets of actions—in other words, that the system reacts to a single change at a time. As
an immediate consequence, columns containing a single ‘@T’ cannot cause any inconsistency, since
in this case only one action set will be executed. The only exception in Table II is column D.FDIR CC
(“Disable FDIR Confirmation Command”). However, the actions corresponding to row i1 (respectively
i2) are taken only subject to the condition that CCREQ = Enabled is true (respectively false), so no
inconsistency can arise between the two rows.

Actually, the one-input assumption holds in our case for events triggered by the reception of
commands—namely, D.FDIR, D.FDIR CC, E.FDIR—due to the serial nature of the 1553 bus used to
carry them. However, we do not know if the assumption holds between bus events (command reception)
and timer events (sampling cycle, testing read pressure values). In a complete study, the assumption
should be verified by inspection of the actual code or detailed design document for our subsystem. It is
interesting to note that the VALSPACE model shows that FDIR and CCREQ can be either ENABLED
or DISABLED only, so that checking for either value in Table II is sufficient. The table also shows
that the system exhibits a certain hysteresis, simply maintaining the previous state for boundary cases
where Pressure exactly equals the Upper or Lower Limit.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

126 V. GERVASI AND B. NUSEIBEH

Ta
bl

e
II

.E
C

A
TA

B
m

od
el

.

E
ve

nt
s

C
on

di
tio

ns

Sa
m

pl
e

cy
cl

e
P

<
L

L
×

3
P

>
L

L
×

3
P

>
U

L
×

3
P

<
U

L
×

3
D

.F
D

IR
FD

IR
=

C
C

R
E

Q
=

R
eq

.
(1

H
z)

s.
c.

s.
c.

s.
c.

s.
c.

D
.F

D
IR

C
C

E
.F

D
IR

E
N

A
B

L
E

D
E

N
A

B
L

E
D

A
ct

io
ns

a
@

T
A

cq
ui

re
P

b c d
@

T
T

L
LW

S
:=

T
R

U
E

L
LW

:=
IN

A
L

e
@

T
L

LW
S

:=
FA

L
SE

L
LW

:=
R

T
N

f
@

T
T

U
LW

S
:=

T
R

U
E

U
LW

:=
IN

A
L

g
@

T
U

LW
S

:=
FA

L
SE

U
LW

:=
R

T
N

h
@

T
C

C
R

E
Q

:=
E

N
A

B
L

E
D

C
C

R
E

J
:=

FA
L

SE
i 1

@
T

T
FD

IR
:=

D
IS

A
B

L
E

D
C

C
R

E
Q

:=
D

IS
A

B
L

E
D

i 2
@

T
F

R
ej

ec
tD

.F
D

IR
C

C
C

C
R

E
J
:=

T
R

U
E

j
@

T
C

C
R

E
Q

:=
D

IS
A

B
L

E
D

FD
IR

:=
E

N
A

B
L

E
D

L
LW

S
:=

FA
L

SE
U

LW
S

:=
FA

L
SE

L
LW

:=
R

T
N

U
LW

:=
R

T
N

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 127

Given a set of actions A, we define its write-set, W(A), as the set of data items modified by the
actions in the set, that is

W(A) = {v | v := value ∈ A} ∪ {v | Acquire v ∈ A}
The intuition behind this definition is that the value of a data item v is changed either by an explicit

assignment of a literal value to it (in which case the new value is known), or by the special Acquire
action that reads a value from a hardware sensor (in which case the new value is not known). Using
Table II, we identified the conditions under which the two variables identified in Finding 4, Cabin
Pressure (P) and Confirmation Command Rejection Indicator (CCREJ), are not initialized (by simply
inspecting the rows ri that satisfy P ∈ W(actions(ri)) and CCREJ ∈ W(actions(ri)), respectively).
P only occurs in the row for requirement a, so P is not initialized until the first sampling cycle
occurs. Depending on the actual subsequent implementation, a first sample could be taken immediately
upon start-up—before even listening to the bus, or it could be delayed for as much as a second—
during which time other components of the system reading the pressure value could obtain erroneous
(random) results. CCREJ on the other hand is modified only by actions in rows h and i2, so it is not
initialized until the first Disable FDIR or the Disable FDIR Confirmation Command (issued while
CCREQ is DISABLED, which is its default value) comes up the bus. Since CCREJ is part of the bus
protocol, we have to assume that this behaviour is documented and does not (currently) constitute a
problem.

Finding 6. If the one-input assumption cannot be guaranteed, we can still identify potentially dangerous
conditions by examining incompatible requirements. Two action sets A and B are incompatible if they
assign different values to the same variable, that is

incompatible(A,B)

⇔ ∃v ∈ W(A) ∩ W(B) s.t. (v := a ∈ A ∧ v := b ∈ B ∧ a = b) ∨ (Acquire v ∈ A ∪ B)

(for our purposes, since ‘Acquire v’ assigns to v an unknown value, the action is potentially
incompatible with any other assignment). In order to avoid conflicting assignments to the same data
item, the conjunction of the events and conditions of rows with incompatible action sets must always
be false, that is

∀r1, r2 ∈ Requirements,∀〈evt1, cond1, act1〉 ∈ ecatab(r1),∀〈evt2, cond2, act2〉 ∈ ecatab(r2),

incompatible(act1, act2) ⇒ ¬(cond1 ∧ cond2 ∧ evt1 ∧ evt2)

In Table II, the following rows are incompatible: (d, e), (d, j), (f, g), (f, j), (h, i1), (h, i2), (h, j), (i1,
j), but only the first and third pairs satisfy the above property. In fact, they can be discounted by simple
arithmetic. For example, let us consider the first pair. Formally, from Table II we can see that

ecatab(d) = 〈{P < LL × 3 s.c.}, {FDIR = Enabled}, {LLWS := TRUE; LLW := IN ALARM}〉
ecatab(e) = 〈{P > LL × 3 s.c.}, {}, {LLWS := FALSE; LLW := RETURN TO NORMAL}〉
The actions for these two requirements are incompatible (in fact, they assign different values

to LLWS), but they are never executed simultaneously, since the conjunction of their events and
conditions is always false (in our case, the conjunction represents the case when the Pressure becomes
at the same time higher and lower than the admissible Lower Limit, while FDIR is enabled). The

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

128 V. GERVASI AND B. NUSEIBEH

second and fourth cases of incompatibility are worth flagging as potentially problematic. We have in
fact

ecatab(d) = 〈{P < LL × 3 s.c.}, {FDIR = Enabled}, {LLWS := TRUE; LLW := IN ALARM}〉
ecatab(j) = 〈{}, {ENABLE.FDIR}, {FDIR := ENABLED; LLWS := FALSE;

LLW = RETURN TO NORMAL; . . . }〉
(with incompatible assignments to LLWS and LLW) and

ecatab(f) = 〈{P > UL × 3 s.c.}, {FDIR = Enabled}, {ULWS := TRUE; ULW := IN ALARM}〉
ecatab(j) = 〈{}, {ENABLE.FDIR}, {FDIR := ENABLED; ULWS := FALSE;

ULW := RETURN TO NORMAL; . . . }〉
(with incompatible assignments to ULWS and ULW). These cases represent the situation when
enabling the FDIR feature continuously (i.e. enabling the reporting of alarms) can actually prevent the
alarms from firing, depending on the order in which events are checked by the code. This problem
could be avoided by checking that FDIR = Enabled is FALSE as a condition for performing the
actions in requirement j. This would make the conjunction of the events and actions false in both
cases, thus satisfying the property above. It is probable that the original intent of the developers in
requirement j was to reset the various alarms when the FDIR feature was turned on. The problem
with this requirement lies in failing to check that FDIR is currently disabled before enabling it and
performing a global reset. As for other findings, the situation should be discussed with the developers
in order to assess the problem and to decide on appropriate corrections.

The analysis of the remaining cases, (h, i1), (h, i2), (h, j) and (i1, j), shows that they formalize bus
protocol violations and can be ignored for a serial bus.

6. LESSONS LEARNED

The findings described in the previous section suggest a number of lessons we can learn from our
experience.

Lesson 1. Style manuals are already out there. We can use them.

Many organizations have style manuals used routinely in all their projects. These manuals usually
contain prescriptions of the structure of requirements documents and of the kind of language that can
be used, and often come from industry-wide standards (e.g., AECMA Simplified English). Even when
strict standards are not adopted, internal guidelines tend to prescribe a more precise writing style by
limiting the richness of unrestricted natural language. In our case study, requirements were written in a
rather technical language. This allowed us to obtain complete parsing of the entire specification of the
Cabin Pressure Monitoring function with only a handful of rules, whereas full natural language parsers
often have several thousand rules.

The use of style manuals makes natural language requirements more amenable to automatic
processing, even when using lightweight methods. Moreover, since they are already in use, there is no
training cost associated with the introduction of such methods. Indeed, in our case study, instantiating
the parsing stage to the language already in use at NASA incurred a cost that was a very small fraction

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 129

of the cost of re-training all the analysts and engineers to a new specification language or method would
have cost.

Lesson 2. Introducing lightweight validation can be easy.

In our experience, the total effort spent on initial set-up, done once only by one of the authors—
familiar with the parsing and modelling environment but completely ignorant of the problem
domain††—was less than three working days. Moreover, doing the validation did not require any
cooperation on the part of the requirements engineers and, even if performed on a larger scale, would
not have added any burden to their everyday work. We believe that lightweight validation of this kind
could be introduced as part of a quality improvement effort without incurring any significant training
costs and without having to overcome any resistance to innovation.

Lesson 3. Lightweight validation is cheap. We can do it often.

Parsing the NCS specification for the Cabin Pressure Monitoring function took less than 10 s, while
generating and validating the various models took between 0.5 and 2 s on a desktop PC. No training was
required for the requirements writers (we used the original document verbatim), and little explanation
of how to interpret the results of the process is needed by a V&V team.

This means that lightweight validation can be performed often, possibly many times during the
day, even to simply test the effects of experimental changes to the requirements. For the requirements
writer, having immediate feedback for such experimental changes is an important factor that simplifies
the analysis of alternative formulations of the requirements.

Lesson 4. Lightweight validation can discover subtle errors in requirements.

Lightweight validation has sometimes been associated with the identification of trivial errors only.
While even trivial errors in the requirements can introduce serious defects in the final system, and are
thus worth flagging and correcting as soon as possible, we have shown that lightweight techniques
can also discover subtle errors in the requirements. In fact, while many of the simpler errors (i.e.
Findings 1–3) were immediately identified through human inspection by the NASA Independent
Validation and Verification (IV&V) facility and corrected in the first subsequent revision of the NCS
specification, others (i.e. Findings 4–6) were not identified and could potentially cause problems in the
system.

In fact, a number of the problems we discovered via lightweight validation (e.g., the need for
alarms tabulation, the issue/set terminological problem, the need for unequivocal alarm designations
and the separation between design and user interface issues) were also independently discovered and
corrected by NASA’s IV&V team. The revision of the NCS specification, immediately following the
three revisions we used in our case study, was changed in line with our findings. The latest revision
also included some evolutionary changes that were not prompted by errors in the previous releases,
but still presented the problems related to uninitialized and to inconsistently named data items that we
discussed above. In light of the partiality of the validation performed by our lightweight methods, we

††This can be an advantage in trying to identify ‘obvious’ errors [27].

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

130 V. GERVASI AND B. NUSEIBEH

regard the fact that no error was discovered by the IV&V team that had gone undetected by our study
as merely a casual—albeit comforting—occurrence.

7. RELATED WORK

The idea that requirements can be analysed in an automatic fashion, in order to identify and possibly
correct several kinds of errors, has always attracted much attention. Most proposals call for a formal
specification of the requirements to begin with. Jackson and Damon [28] in their validation tool
Nitpick assume that requirements are expressed in a subset of Z and Reubenstein and Waters [29]
call for ‘natural language-like’ requirements written in LISP. Heitmeyer et al. [25] present a method
based on the Four-Variables Model by Parnas and Madey, discuss the design of a prototype tool and
give conditions under which the consistency checks can be complete. In their proposal, requirements
must be expressed in a tabular notation based on finite-state machines and event/conditions tables.
Validation via model checkers like Nitpick or SPIN [30] can provide a high degree of confidence, but
the formalization step itself is prone to errors, so some connection to informal requirements is often
sought.

Duffy et al. [31] try to integrate formal and informal representations of the requirements by
mandating that both must be stated side-by-side; analysis is then performed on the formal version.
However, equivalence between the two representations of the same requirement is only assumed and no
guarantee is given of their actual correspondence. So, effectively, their proposal amounts to annotating
a formal requirements document with abundant natural language comments. Others (e.g., [32]) propose
to generate a natural language paraphrase of a formal requirements document to help the interaction
with the customer and other non-technical participants in the software development process. This
approach is the exact dual of the one we presented in the present paper, based on parsing of natural
language requirements. Both techniques can be used in the same project and actually complement each
other well. Other work related to the techniques we used in the case study include that of Rolland [8],
where parsing techniques are used to extract a conceptual model from natural language requirements,
and that of Macias and Pulman [9], in which a strict syntax is imposed on the requirements to ensure
syntactic quality. Both works use domain-independent natural language parsing, and only provide
linguistic models of the requirements, thus missing important opportunities for validation of the system
described by the requirements.

Mich [11] presents NL-OOPS, a tool that supports requirements analysis by generating object-
oriented models from unrestricted NL requirements. Full NL analysis is performed using the NL
processing system LOLITA [33] for the parsing stage. The object-oriented analysis module implements
an algorithm for the extraction of the objects and their associations from the semantic net created by
the parser. While LOLITA can correctly parse texts of great complexity, the simple object-association
model that is extracted from the requirements provides few opportunities for validation. A comparable
model is obtained in [13], where a ‘utility language’ based on a restricted grammar is used to express
the requirements. A restricted language, specifically devoted to expressing temporal relationships, is
also used in [10]. The authors show how requirements expressed in the restricted language can be
mapped to the action logic ACTL; various reachability and liveness properties are then model checked
on the ACTL specification. All these works focus on a single model of the system and the issue of
adaptability to particular domain-specific needs is not discussed. The single-model view restricts the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 131

applicability of the techniques described to specific cases, whereas our approach explicitly requires a
customization phase on the language, on the models and on the validation properties that are important
in a certain context.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a structured approach for validating NL requirements. We applied
our approach to an industrial case study, which served to demonstrate the feasibility and benefits of
lightweight formal methods in this context. The low cost of our approach, both in terms of human
training and of computational resources needed, makes it particularly well suited for the initial
introduction of formal methods in an organization. Moreover, the low computational and human
costs strongly suggest that our techniques could be used successfully during requirements writing
and evolution‡‡. We believe that the application of similar techniques could also help in tracking the
quality of a specification between full releases and inspections, thus providing finer grain monitoring
of the RE process [34] and to some extent validating changes that are requested and implemented.

In an industrial context, our approach has the added advantage of explicitly defining (in the set-up
phase) the language to be used in requirements documents, the associated models and the validation
properties to be checked, actually enforcing the use of style and quality guides in the organization
because they are embedded into the tool, thus supporting improved documentation and repeatability. It
becomes possible to attain constant and predictable precision of the validation during the production
phase, whereas traditional human inspections can suffer from distraction, boredom or simply from
changes in the inspector’s effectiveness due to changing personnel. With lightweight validation, an
inspector can delegate the most tedious aspects of validation to automatic tools and concentrate on
more challenging issues.

Although we examined a single requirements document, the techniques we developed for the case
study were re-used to validate subsequent releases of the same document, and indeed can be applied
to other projects making use of a similar document style. So, for example, the effort spent defining
parsing rules need not be duplicated in subsequent projects by the same organization. However, to give
a full assessment of the impact of lightweight formal methods based on parsing of NL requirements, a
larger-scale study should be conducted along the lines of the study we presented in this work, while at
the same time cooperating more actively with the requirements engineers. The NCS requirements we
examined were remarkably structured and regular, and used a very precise language on a well-defined
vocabulary. These properties made it possible to parse the specification completely by using a small
set of parsing rules. However, more complex or looser language would not necessarily entail more
complex parsing rules. Rather, the extraction of models via partial parsing can be understood as a kind
of information extraction, in which only those fragments in the text that contain information relevant
for the synthesis of a particular model are identified and processed. By working with partial analysis,

‡‡For very large documents, differential parsing and model updating can be used instead of re-parsing the entire document each
time. In this case, parsing time drops to less than a second on average and is influenced only by the amount of change in the
document between validation iterations and not by the document size. In our experience, the amount of change between revisions
tends to remain constant and so does parsing time.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

132 V. GERVASI AND B. NUSEIBEH

the approach we presented can thus scale to larger and more complex documents without requiring a
correspondingly larger set-up effort.

The inconsistencies we identified in our case study currently appear to be non-critical; however,
unfortunate experiences (such as the Ariane 5 disaster [35]) have shown us that risk assessments
can change as requirements and other circumstances change. The availability of lightweight formal
methods to identify and track inconsistencies in NL requirements documents is therefore invaluable.

We expect that embedding lightweight formal methods into a requirements engineer’s everyday
development environment would provide substantial productivity benefits. For example, a requirements
management tool could be adapted to provide a validation function as part of its analysis capabilities.
Given the negligible cost of the application of lightweight validation, we believe that performing
continuous validation inside a requirements authoring environment will improve the quality of
requirements submitted to more traditional inspections, thus lowering the cost of the inspections
themselves.

ACKNOWLEDGEMENTS

We would like to thank Khalid Lateef and John Hinkle of the NASA IV&V Facility, West Virginia, U.S.A.,
for providing us with the case study and for their valuable feedback and discussions. Thanks also go to Jack
Callahan and Steve Easterbrook for many useful insights into NASA V&V procedures, and to Connie Heitmeyer
and Ramesh Bharadwaj for their helpful comments on an early draft of this paper. We would also like to thank the
anonymous reviewers for their many comments and suggestions. The authors acknowledge the financial support
of NASA under Cooperative Agreement #NCC 2-979, the UK EPSRC for the MISE (GR/L 55964) and VOICI
(GR/M 38582) projects, the Italian MURST for the AI:IA project, and the EU for the RENOIR and PROMOTER
2 projects. This paper is a revised and expanded version of [36].

REFERENCES

1. Feather MS. Rapid application of lightweight formal methods for consistency analyses. IEEE Transactions on Software
Engineering 1998; 24(11):949–959.

2. Jackson D, Wing J. Lightweight formal methods. IEEE Computer 1996; 29(4):21–22.
3. Easterbrook S, Lutz R, Covington R, Kelly J, Ampo Y, Hamilton D. Experiences using lightweight formal methods for

requirements modeling. IEEE Transactions on Software Engineering 1998; 24(1):4–14.
4. Kemmerer RA. Integrating formal methods into the development process. IEEE Software 1990; 7(5):37–50.
5. Goldin L, Berry DM. Abstfinder: A prototype natural language text abstraction finder for use in requirement elicitation.

Automated Software Engineering Journal 1997; 4(4):375–412.
6. Hesketh J, Robertson D, Fuchs N, Bundy A. Lightweight formalisation in support of requirements engineering. Automated

Software Engineering 1998; 5(2):183–210.
7. Murphy GC, Notkin D. Lightweight source model extraction. Proceedings of the 3rd ACM SIGSOFT Symposium on the

Foundations of Software Engineering, October 1995. ACM Press: New York, 1995; 116–127.
8. Rolland C. A natural language approach for requirements engineering. Advanced Information Systems Engineering

(Lecture Notes in Computer Science, vol. 593). Springer: Paris, 1992.
9. Macias B, Pulman SG. Natural language processing for requirements specification. Safety-critical Systems. Chapman and

Hall: London, 1993; 57–89.
10. Fantechi A, Gnesi S, Ristori G, Carenini M, Vanocchi M, Moreschini P. Assisting requirement formalization by means of

natural language translation. Formal Methods in System Design 1994; 4(3):243–263.
11. Mich L. NL-OOPS: From natural language requirements to object oriented requirements using the natural language

processing system LOLITA. Journal of Natural Language Engineering 2(2):161–187.
12. Fuchs NE, Schwertel U, Schwitter R. Attempto controlled English—not just another logic specification language.

Proceedings of the 8th International Workshop on Logic-Based Program Synthesis and Transformation (LOPSTR’98),
Manchester, UK, June 1998 (Lecture Notes in Computer Science, vol. 1559). Springer: London, 1999.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

LIGHTWEIGHT VALIDATION OF NATURAL LANGUAGE REQUIREMENTS 133

13. Juristo N, Moreno AM, López M. How to use linguistic instruments for object-oriented analysis. IEEE Software 2000;
17(3):80–89.

14. Boehm BW. Verifying and validating software requirements and design specifications. IEEE Software 1984; 1(1):75–88.
15. Nuseibeh B, Easterbrook S. Requirements engineering: A roadmap. The Future of Software Engineering, ICSE-2000,

Limerick, Ireland, 6–10 June 2000, Finkelstein A (ed.). ACM Press: New York, 2000.
16. Macias B, Pulman SG. A method for controlling the production of specifications in natural language. The Computer Journal

1995; 38(4):310–318.
17. NASA/Boeing. Software requirements specification for the NCS MDM CSCI. International Space Station Document S684-

10174, April 1997.
18. Russo A, Nuseibeh B, Kramer J. Restructuring requirements specifications: A case study. Proceedings of 3rd IEEE

International Conference on Requirements Engineering (ICRE’98), 51–60, Colorado Springs, CO, April 1998. IEEE
Computer Society Press: Los Alamitos, CA, 1998.

19. Russo A, Nuseibeh B, Kramer J. Restructuring requirements specifications. IEE Proceedings: Software 1999; 144(1):44–
53.

20. Fabbrini F, Fusani M, Gervasi V, Gnesi S, Ruggieri S. Achieving quality in natural language requirements. Proceedings of
the 11th International Software Quality Week, San Francisco, May 1998.

21. Ambriola V, Gervasi V. Processing natural language requirements. Proceedings of the 12th IEEE Conference on Automated
Software Engineering, November 1997. IEEE Computer Society Press: Los Alamitos, CA, 1997; 36–45.

22. Gervasi V. Environment support for requirements writing and analysis. PhD Thesis, University of Pisa, February 2000.
23. Krogstie J, Lindland OI, Sindre G. Towards a deeper understanding of quality in requirements engineering. Proceedings

of the 7th International CAiSE Conference, Jyvaskyla, Finland (Lecture Notes in Computer Science, vol. 932). Springer:
Germany, 1995; 82–95.

24. Aho AV, Kernighan BW, Weinberger PJ. The AWK Programming Language. Addison-Wesley: Reading, MA, 1988.
25. Heitmeyer C, Kirby J, Labaw BG, Bharadwaj R. SCR*: A toolset for specifying and analyzing software requirements.

Proceedings of 10th Annual Conference on Computer-Aided Verification (CAV’98), Vancouver, Canada, 1998.
26. Heitmeyer C, Jeffords RD, Labaw BG. Automated consistency checking of requirements specifications. ACM Transactions

on Software Engineering and Methodology 1996; 5(3):231–261.
27. Berry DM. The importance of ignorance in requirements engineering. Journal of Systems and Software 1995; 28(2):179–

184.
28. Jackson D, Damon CA. Elements of style: Analyzing a software design feature with a counterexample detector. IEEE

Transactions on Software Engineering 1996; 22(7):484–495.
29. Reubenstein HB, Waters RC. The requirements apprentice: Automated assistance for requirements acquisition. IEEE

Transactions on Software Engineering 1991; 17(3):226–240.
30. Holzmann GJ. Proving properties of concurrent systems with SPIN (Lecture Notes in Computer Science, vol. 962).

Springer, 1995.
31. Duffy D, MacNish C, McDermid J, Morris P. A framework for requirements analysis using automated reasoning (Lecture

Notes in Computer Science, vol. 932). Springer: Germany, 1995.
32. Dalianis H. A method for validating a conceptual model by natural language discourse generation. Advanced Information

Systems Engineering (Lecture Notes in Computer Science, vol. 593). Springer: Germany, 1992.
33. Morgan R, Garigliano R, Callaghan P, Poria S, Smith M, Uranowicz A, Collingham R, Costantino M, Cooper C, LOLITA

Group. Description of the LOLITA system as used in MUC-6. Proceedings of the 6th ARPA Message Understanding
Conference. Morgan Kaufmann, 1996.

34. Ambriola V, Gervasi V. Process metrics for requirements analysis. Proceedings of the 7th European Workshop on Software
Process Technology, February 2000 (Lecture Notes in Computer Science, vol. 1780). Springer: Germany, 2000; 90–95.

35. Nuseibeh B. Ariane 5: Who Dunnit? IEEE Software 1997; 14(3):15–16.
36. Gervasi V, Nuseibeh B. Lightweight validation of natural language requirements: A case study. Proceedings of the 4th IEEE

International Conference on Requirements Engineering (ICRE-2000), Schaumburg, IL, USA, June 2000. IEEE Computer
Society Press: Los Alamitos, CA, 2000.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:113–133

	1 INTRODUCTION: LIGHTWEIGHT FORMAL METHODS AND REQUIREMENTS VALIDATION
	2 VALIDATING NL REQUIREMENTS
	3 THE CASE STUDY
	4 APPLICATION OF THE APPROACH TO THE CASE STUDY
	5 FINDINGS OF THE VALIDATION
	6 LESSONS LEARNED
	7 RELATED WORK
	8 CONCLUSIONS AND FUTURE WORK

