
3 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

focus 1

Market-driven requirements
management

In a product company, requirements manage-
ment bridges market interaction (existing cus-
tomers, prospects, and analysts) with product
development planning (content, resource plan-
ning, and timing). We can therefore distinguish
between two major groups of requirements:
customer wishes and product requirements.

Customer wishes are expressions of the per-
ceived market need. These are naturally subject

to frequent change—as the product evolves,
the market need changes accordingly. Cus-
tomer wishes make up a vital and valuable in-
formation source for decision-making. Also,
because the wishes are written using the cus-
tomer’s own perspective, they enable better
communication with each customer.

Product requirements are those that the de-
veloping company finds worthwhile to pursue
(stated from the developing company’s per-
spective). Companies also use these as a basis
for product release planning as well as for
conducting feasibility studies and, if selected
for implementation, starting actual software
development.

Customer wishes and product requirements
often emerge independently of one another, and,
for several reasons, it’s essential to keep them
separated. For example, customers might ex-

A Linguistic-Engineering
Approach to Large-Scale
Requirements Management

F
or large software companies, the sheer number of textual require-
ments presents specific challenges. To find market opportunities,
organizations must continuously elicit new requirements and
reevaluate old ones as market needs evolve. Even so, you can im-

plement only a subset of these requirements for the next release. Using lin-
guistic-engineering techniques early on in the requirements management
process could make this ongoing process less of a hindrance.

Developing large, complex software products aimed at broad
markets involves identifying and maintaining the link between
product requirements and the massive inflow of customers’
wishes. Automating this support through linguistic engineering
could save considerable time and improve software quality.

Johan Natt och Dag and Björn Regnell, Lund University

Vincenzo Gervasi, University of Pisa

Sjaak Brinkkemper, Utrecht University

requirements engineering

press their wishes slightly differently from one
another and without referring to the software or
business architecture. However, a product re-
quirement addressing all the differently stated
wishes might include additional information
that’s required for decision-making and devel-
opment but that shouldn’t be communicated
back to the customers (for example, references
to potential technical solutions, either the com-
pany’s own or from competitive analysis).

Naturally, the two requirements groups
share multiple associations. Organizations
must find and maintain these links, because
they constitute a significant piece of informa-
tion for requirements prioritization and re-
lease planning.

Unfortunately, the linkage process is cumber-
some. Each time a new customer wish arrives,
the task of determining whether it’s related to
the wide variety of product requirements is time
consuming. Organizations often accomplish
this task using simple search facilities, which
takes effort and can result in missing links. A
hierarchical requirements organization that’s
well thought out might help (for example,
based on the software architecture), but as the
product gets more complex, requirements
won’t always fit nicely into such a structure.
Moreover, as the architecture, product, and
company focus evolve, the requirements hier-
archy deteriorates.

A linguistic-engineering approach
Industrial experience shows the need for

automated support in the requirements man-
agement area.1,2 Modeling several thousand
requirements, even incrementally, to be able to
efficiently select only a small subset for imple-
mentation is simply not financially beneficial.
Any automated support must rely purely on
the original form of requirements, or unre-
fined natural language.

Approaches using natural language pro-
cessing (NLP) techniques to model, validate,
and help understand requirements are avail-
able but aren’t directly applicable here.3 These
approaches present interesting opportunities
but can’t effectively cope with the large
amount of requirements we’re considering.4,5

We have to choose a more pragmatic angle.
A link between a customer wish and a

product requirement indicates that they refer
to the same software functionality. Two re-
quirements should be linked if they have the

same meaning, even if expressed in a different
style and vocabulary. Unfortunately, there’s
still no method for representing meaning in a
way that automated systems can use success-
fully. We therefore choose to recast the chal-
lenge into suggesting semantic similarity on
the basis of lexical features. We assume that
customer wishes and product requirements re-
fer to the same functionality if they use the
same terminology. In a requirements-engineer-
ing context this is a reasonable assumption,
because the language tends to be more precise
than in literary text, and, moreover, both cus-
tomer wishes and product requirements refer
to the same domain.

When we submit the requirements to an au-
tomated process for establishing proper links,
an imagined support system first performs sev-
eral internal preprocessing steps (see the “Pre-
processing” sidebar).

The system will then internally represent
each requirement using a vector of terms, ac-
cording to the vector-space model (see the
“The Vector-Space Model and the Cosine
Measure” sidebar). From the vectors, the sys-
tem can derive how many terms the require-
ments have in common; we can use this as an
intuitive starting point for a similarity measure.

However, better measures exist that con-
sider both the requirements’ length and the
number of times the shared terms occur. One
common measure the literature suggests is the
Cosine measure, which calculates the angle be-
tween the vectors in the high-dimensional
space (see the “The Vector-Space Model and
the Cosine Measure” sidebar).

Once we define the similarity measure, sug-
gesting potential links for an incoming require-
ment is a matter of sorting preexisting require-
ments according to their similarity to the new
one and offering the most similar requirements
to the user as candidates for establishing links.

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 3 3

This article reveals the potential, as yet untapped, of applying
linguistic approaches to known and emerging requirements prob-
lems. Although for accuracy such translations should be limited to a
specific domain, the authors show with an open source tool how
you could use a linguistic approach to RE in your own projects.

—Neil Maiden, Suzanne Robertson, and Christof Ebert,
guest editors

WHY READ TH IS ART ICLE?

Experiment: The Baan
requirements set

From 1998 through 2002, Brinkkemper in-
troduced a new requirements management

process at Baan (now part of SSA Global). As
Figure 1 shows, requirements management is
part of the overall release development
process, which also consists of development

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The system first flattens each requirement by merging the
label and description fields and discarding other administra-
tive information (spelling errors are italicized for clarity).

Next, it transforms each requirement into a sequence of to-
kens after removal of capitals, punctuation, brackets, and so
on. This stage is called tokenization.

The system then applies stemming to each token to remove
affixes and other lexical components. For example, after this

step, both “managed” and “managing” are transformed into
“manage,” thus simplifying further processing.

Finally, the system then removes common terms that are
unlikely to contribute to an appropriate similarity measure
(stop words). Articles, prepositions, and a few other words
are discarded in this step.

For example, part of the market requirement in Table 1
(see main text) is reduced as shown in Figure A:

Preprocessing

The vector-space model is a standard way of representing
texts through the words they comprise. Each text is represented
as a vector in the high-dimensional space corresponding to the
vocabulary used, where each dimension represents a word.
Parts of the market and business requirements in Table 1 would
be represented by the word space and corresponding vectors
shown in Table A (where the values represent the number of oc-
currences of each word).

The Cosine measure then takes the two vectors as input
and returns a similarity value between 0 and 1, correspon-
ding to the cosine of the angle between the vectors:

The denotes the dot product of rm and rb, which is
calculated by multiplying the corresponding frequencies of
each word and then adding them together. However, as the
number of times a word occurs is relevant, its relevance de-
creases as the number gets larger. One common approach is
therefore to weight the term frequencies using the formula
1 + log2(term frequency). Thus, for the business and market
requirements in our example, the similarity becomes

σ(,)
log () log ()

r r
r i r i

m b
mi b=

+ ∑ 1 1

1++ • +

≈
∑ ∑log () log ()

.

2
2

2
2

1
0 32.

r i r imi bi

2 2• +

m br • r

σ r r
r r
r rm b
m b

m b

,
•

•
() =

The Vector-Space Model and the Cosine Measure

Table A
Word space and vectors

rm = (1, 2, 2, 0, 0, 1, 3, 0, 7, 0, 0, 0, 0, 2)
rb = (6, 0, 5, 4, 2, 0, 1, 2, 0, 1, 1, 0, 8, 1)

co
nta

ine
r

co
nta

ine
riz

ati
on

ite
m

lev
el

main pa
ck

ag
e

pri
ce

pri
nt

pro
ce

ss
pu

rch
as

e
sa

le
se

qu
en

ce
sta

tis
tic

s
typ

e

Stage 1: Flattened Stage 2: Tokenized Stage 3: Stemmed Stage 4: Stop words removed

Pricing and Containerization pricing and containerization price and containerization price containerization
Specifically what I am interested specifically what i am interested specifically what i be interest specifically containerization
in is containerization and pricing. in is containerization and pricing in be containerization and price price prospect pretty distributor
For a prospect I am working with for a prospect i am working for a prospect i be work with electonic component pricng
(pretty much a distributor of with pretty much a distributor pretty much a distributor of type package cusotmer type
electonic components) I need of electonic components i need electonic component i need pricng wholesale retail
pricng by type of package by pricng by type of package by type of package by cusotmer
cusotmer type(wholesale by cusotmer type wholesale type wholesale or retail
or retail). or retail

Figure A. Preprocessing part of our example market requirement.

management to create the new releases and de-
livery management to control the software
component delivery to customers (not shown
in the figure).

The concepts this process introduces are

■ Market requirement (MR): A customer
wish related to future products, defined in
the customer’s perspective and context.

■ Business requirement (BR): A product re-
quirement to be covered by Baan prod-
ucts, described in Baan’s perspective and
context.

■ Release initiation (RI): A formal docu-
ment that triggers a release project in Baan
(containing criteria for selecting BRs).

■ Version definition (VD): A document list-
ing the new release’s BRs with the needed
personnel resources.

■ Conceptual solution (CS): A document ex-
plaining the business solution preferably
for one BR.

Continuously and as soon as possible after
their receipt or creation, the new MRs and
BRs are inserted into the Baan Requirements
Database (BRD). Only after company man-
agement decides to start a new release proj-
ect, an RI document triggers the writing of
the corresponding VD and CS. These are
then input for the development processes,
which include writing design documents and
actual coding.

Copying MRs into the BRD occurs without
altering the original text as specified by the
customer. So, if several customers suggest the
same functional extensions, these are each
recorded in separate MRs. Providing timely
feedback helps maintain a good relationship
with the customer, who receives an informa-
tive message after input review and also after
the release is complete.

Product managers responsible for (a part
of) the product create BRs, which should re-
flect a coherent, well-defined extension of the
product. It might be that an MR is very large
and therefore linked to many different BRs. A
noncoherent MR dealing with dispersed func-
tional areas is also linked to different BRs.
Hence, the MR–BR relationship is of many-to-
many cardinality, making proper MR-to-BR
linking an essential process.

Linking MRs to BRs, and vice versa, is a
daily routine for the product managers. Each

time a new MR arrives into the BRD, they first
check it by searching to find out whether one
or more BRs already include the specified
functionality. This process is quite time con-
suming, as current tools allow only text search
in the requirement description.

Similarly, when a new BR is created, the
corresponding MRs have to be found in the
BRD, since the objective is to satisfy as many
customers as possible. Finding all MRs that
the BR at hand covers is virtually impossible
because of the numerous MRs and the time-
consuming process of trying to understand
MR content.

For an idea of the high volume and complex-
ity in the requirements management process,
consider these statistics. By the end of 2000, the
Baan software framework consisted of 250
modules and 10,000 components, comprising
about 4.5 millions of lines of code. From 1996
through 2002, Baan elicited 3,800 business and
8,300 market requirements. Each month, 100
new market requirements arrive, of which 20
are handled for the coming release. Over the
years, 2,400 market requirements have been
linked to 1,100 business requirements.

Example requirements
Table 1 features representative examples of

an MR and a linked BR. In the label and de-
scription fields, we find the principal informa-
tion that constitutes the requirement. The con-
tents in these fields are written in English, Baan’s

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 3 5

De
ve

lo
pm

en
t

m
an

ag
em

en
t

Requirem
ents

m
anagem

ent

Market
requirements

Release
initiation

Definition
study

Functional
design

Technical
design Software

component

Version
definition

Conceptual
solution

Business
requirements

Baan Requirements Database

release-based

release-based
ongoing, continuous

Figure 1. The Baan
requirements
management process.

corporate language, and might very well contain
spelling errors (italicized for clarity in the exam-
ples), acronyms, code snippets, and so on.

Currently, product managers would look
for candidate MRs for the BR in Table 1 by

searching for specific terms. For example, the
term container gives hits in the label field of
37 requirements and in the description field of
318 requirements. In our case, five MRs were
linked by experts, of which four were found
through the label field. The last link was
found by searching for statistics (giving 40 la-
bel and 99 description hits).

Evaluation results
For a particular requirement of a given type,

we’re interested in the other type’s list of can-
didate requirements. We therefore construct a
top list for each market requirement by sorting
the business requirements by similarity.

To evaluate how well the approach per-
forms when it comes to presenting the correct
links, we use the product manager’s manually
identified links as the “presumably correct”
answer. We can then calculate the recall rate as
a function of the top list size (the ratio be-
tween the number of correct links found in the
top list and the total number of correct links).

A top list size of 1 isn’t necessary, or wanted.
For example, a top-10 list lets us quickly spot
one or more correctly related requirements,
while taking into account that we aren’t able to
reach 100 percent recall.

The results from our evaluation show the re-
call curve for the top lists of suggested BRs for
each MR (see Figure 2). The solid line represents
the recall curve for calculating similarity using 1
+ log2(term frequency), and the dashed line for
calculating it using just the term frequency.

As you can see, we never reach 100 percent
recall. This is because some links couldn’t be
identified at all—that is, some related require-
ments have no terms in common. We couldn’t
identify 204 links, which resulted in a maximum
recall of approximately 94 percent—that is
(3,259 � 204)/3,259—but to reach the maxi-
mum recall, we would require a top list of 3,000
requirements, which is quite unreasonable.

For a reasonable top list size of 10, as the
figure shows, we reach a recall of 51 percent.
This is good considering the pragmatic ap-
proach we took and the impact on the time
that could be saved in industry.

Saving time
To indicate the amount of time the process

could save, we make a rough estimate on the
basis of these statistics and another measure
reflecting how many requirements could be

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 1
Example market and business requirements

Field Example

Id MR1000739 [Market requirement]
Customer [Customer company. Proprietary information.]
Date 1996-05-29
Label Pricing and containerization
Description Specifically what I am interested in is containerization and pricing. For

a prospect I am working with (pretty much a distributor of electonic
components) I need pricng by type of package by cusotmer type
(wholesale or retail). I think pricing by container solves this problem,
but I understand to use this feature the item must be a process item
and I don’t know if this is good or bad. If I must use process what do
I gain or lose, like do I have to run a seperate MRP etc. Do I have to
have one process company and one non-process company. They have
mainly an assembly operation with no process involved. If process
would be to cumbersome how difficut a mod would it be to disconnect
containerzation from process.

Keywords Pricing, order planning
Priority Medium
Type Functionality
Status Closed/completed
User name [Product manager. Proprietary information.]
Comments 020699: functionality is available in BaanERP in the pricing module
Agreement None

Id BR1000025 [Business requirement]
Customer [Customer company. Proprietary information.]
Date 1998-01-27
Label Statistics and containers
Description 1. Container (end item) in statistics

Purchase and sales statistics used to be maintained only at main
item level. But now it has also become possible to build statistics at
container level. There are two aspects: printing statistics in the
number of containers for a main item selecting and/or printing
statistics at container level

2. Displays in statistics
Displays are compositions of end items (for example, an attractive
display of different types of cake). The statistics will be updated at
both the levels of display item and container (which is part of the
display). Prevention of duplicate counting, and correct pricing
must be arranged in a procedural manner.

Keywords Process industries
Type Usability
Status Assigned
User name [Product manager. Proprietary information.]
Comments Warehousing only

completely linked just by browsing a top-10
list. We found that for 690 of the BRs, the re-
call rate would be 100 percent using a top list
size of 10. This means that every related MR
for each of the BRs would be found within a
top-10 list. The 690 BRs link to 1,279 MRs,
giving an average of 1.85 MRs per BR. But to
not exaggerate the gain, we assume that, in the
manual case, one search term is enough to find
all the links for one requirement.

We further assume that a manual search
would return approximately 30 hits (based on
the previous search examples). Thus, the worst-
case scenario would be to browse 30 require-
ments. With a top list size of 10, the worst-case
scenario with automated support would be to
browse 10 requirements. Consequently, the
process could save up to 66-percent effort.

If we assume that it takes about 30 seconds
to accept or reject a requirement as a link, we
find that the gain is (690 • 30 • 0.5) � (690 •10
• 0.5) minutes, which is 6,900 minutes, or 115
hours.

The critical reader might say that in a real
setting it’s impossible to know the stop crite-
rion, or how to know if a presented top-10 list
comprises all the possible links for an arbi-
trary requirement. Although that’s true, the
same applies to the manual case: searching for
more keywords could yield more links. Never-
theless, the calculations just given show that a
similar coverage level can be reached more ef-
ficiently (that is, with less effort) by applying
lexical similarity compared to keywords
search. If so desired, the time saved can be
spent in increasing the level of coverage, by
examining more candidates, or devoted to
other RE activities if the coverage attained is
deemed acceptable.

The ReqSimile tool
Considering the need for automated support

in the described linkage process and also to
demonstrate our approach, we’ve implemented
an open source tool in Java called ReqSimile
(see Figure 3; http://reqsimile.sourceforge.net).
The tool operates on arbitrary requirements
sources, which are accessed through a stan-
dard interface (Java Database Connectivity).
ReqSimile can therefore integrate well with
existing requirements databases (provided a
database driver is present). All the involved
database tables and fields can be specified
from within the tool.

The left side in the top pane of the window
presents a brief list of requirements. Selecting
a requirement makes the requirement’s details
show on the right. Double-clicking a require-
ment makes ReqSimile calculate the require-
ment’s similarity to all the requirements in the
other set.

A list of candidate requirements, sorted by
similarity, then shows in the bottom pane. For
flexibility, the user can affect the ranking by
adding more search terms in a separate text box.

Already linked requirements are high-
lighted, and each requirement’s details are
shown on the right when the requirement is
selected. Through the buttons next to each re-
quirement, the user can remove or add links
between the selected requirements, and the
program will update the requirements data-
base accordingly.

For research purposes, the program also
calculates and reports different measures, such
as statistics on the requirements sets and recall
rates based on the currently linked set.

For practical use, a company can integrate
the technique we describe into its existing re-
quirements management solution, or it can use
ReqSimile as an external tool supporting the
linking step. In the latter case, the company
obtains integration with the existing require-
ments management practices by configuring

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 3 7

1 10 100 1,000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top-list size

Re
ca

ll
Term weight = term frequency
Term weight = 1 + log2 (term frequency)

Figure 2. Recall curve for the top lists of suggested business
requirements for each market requirement.

ReqSimile to interface with the organization’s
requirements database.

Further work
The ReqSimile tool and the underlying

techniques do a good job of supporting the
linkage process. Our approach’s statistical na-
ture makes it resilient to unintentional errors
in the text (for example, spelling errors). It’s
not worth trying to correct such errors auto-
matically as part of the linking process. In
fact, automatic correction is likely to intro-
duce more errors. Furthermore, occasional ty-
pos have negligible impact on the recall. How-
ever, we’ve identified other issues that might
be interesting to pursue (previous work pro-
vides a more elaborate review of potential im-
provement4,6).

One worthwhile approach would be to in-
corporate and aggregate several different sim-
ilarity calculation techniques.6 Different lin-

guistic models might together contribute to
better precision.

Another promising approach for improving
the precision in future suggestion lists would
be to reuse the information in previously
linked requirements. A support tool could use
the information to improve similarity meas-
ures, to leave out already linked requirements,
or as a learning set to add relevant terms not
originally in the requirement.

A third issue is to incorporate semantics
to catch more distant similarities. We expect
the handling of synonyms, hypernyms (more
general terms, such as vehicle), and hyp-
onyms (more specific terms, such as bike) to
provide marginal improvement over the re-
sults reported.

Implementing all the extensions we’ve men-
tioned would likely bring further improve-
ments over our results, making the approach
even more effective.

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 3. ReqSimile, an open source tool in Java.

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 3 9

S oftware engineers have yet to fully ex-
ploit linguistic-engineering techniques
to support large-scale software prod-

uct development.7 One reason for this is re-
searchers’ limited access to industrial require-
ments collections. These information sources,
together with the requirements activities cur-
rently performed in industry, will reveal new op-
portunities for applicable linguistic-engineering
research. The challenge is to consider all the cri-
teria to yield acceptance: usability, cost-benefit,
flexibility, robustness, and efficiency, to mention
a few.8 The approach we present is a promising
step toward well-engineered systems to aid
large-scale requirements management in com-
panies that rely on communication in natural
language.

Acknowledgments
We thank Pierre Breuls and Wim van Rijswijk at

Baan in Barneveld for kindly providing the require-
ments database. Thanks to Per Runeson and Lena
Karlsson for critical reviews. Thanks to Ernhold
Lundström Foundation for covering travel expenses.

References
1. H. Kaindl et al., “Requirements Engineering and Tech-

nology Transfer: Obstacles and Incentives,” Require-
ments Eng., vol. 7, no. 3, 2002, pp. 113–223.

2. M. Höst et al., “Exploring Bottlenecks in Market-Driven
Requirements Management Processes with Discrete
Event Simulation,” J. Systems and Software, vol. 59,
2001, pp. 323–332.

3. J. Natt och Dag and V. Gervasi, “Managing Large Repos-
itories of Natural Language Requirements,” Engineering
and Managing Software Requirements, Springer-Verlag,
2005.

4. J. Natt och Dag et al., “A Feasibility Study of Auto-
mated Natural Language Requirements Analysis in
Market-Driven Development,” Requirements Eng., vol.
7, no. 1, 2002, pp. 20–33.

5. S. Park et al., “Implementation of an Efficient Require-
ments-Analysis Supporting System Using Similarity
Measure Techniques,” Information and Software Tech-
nology, vol. 42, no. 6, 2000, pp. 429–438.

6. J. Natt och Dag et al., “Speeding Up Requirements
Management in a Product Software Company: Linking
Customer Wishes to Product Requirements through
Linguistic Engineering,” Proc. Int’l Requirements Eng.
Conf. (RE2004), IEEE CS Press, 2004, pp. 283–294.

7. L. Mich, M. Franch, and P.L. Novi Inverardi, “Market
Research for Requirements Analysis Using Linguistic
Tools,” Requirements Eng., vol. 9, no. 1, 2004, pp.
40–56.

8. R. Garigliano, “JNLE Editorial,” Natural Language
Eng., vol. 1, no. 1, 1995, pp. 1–7.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Johan Natt och Dag is a licentiate engineer in software engineering. His research in-
terests include requirements management, software product management, software quality,
and usability engineering. He received an MSc in computer science and technology from Lund
Institute of Technology. He is a member of the ACM and of the Swedish Requirements Engi-
neering Research Network (SiREN). Contact him at the Dept. of Communication Systems, Lund
Univ., P.O. Box 118, SE-221 00 Lund, Sweden; johan.nattochdag@telecom.lth.se.

Vincenzo Gervasi is a research associate at the Dipartimento di Informatica of the Uni-
versity of Pisa, where he is a member of the Software Engineering group, and honorary associ-
ate at the Faculty of Information Technology of the University of Technology, Sydney. His re-
search interests include requirements engineering, natural language processing, specification
techniques, and design and evaluation of distributed algorithms. He received his PhD in com-
puter science from the University of Pisa, Italy. Contact him at Dipartimento di Informatica, via
F. Buonarroti 2, I-56127 Pisa, Italy; gervasi@di.unipi.it.

Sjaak Brinkkemper is a professor of organization and information at the Institute of
Information and Computing Sciences of the Utrecht University. He is a former consultant at the
Vanenburg Group and chief architect at Baan. He received his PhD from the University of Ni-
jmegen. He is a member of the IEEE Computer Society, the ACM, and the Netherlands Society
for Informatics. Contact him at Institute of Information and Computing Sciences, Utrecht Univ.,
PO Box 80.089, 3508TB Utrecht, Netherlands; s.brinkkemper@cs.uu.nl.

Björn Regnell is an associate professor in software engineering at Lund University. His
research interests include requirements engineering, empirical software engineering, software
product management, process improvement, and market-driven software development. He re-
ceived his PhD in software engineering from Lund University. He is chair of the Swedish Re-
quirements Engineering Research Network (SiREN). Contact him at the Dept. of Communication
Systems, Lund Univ., PO Box 118, SE-221 00 Lund, Sweden; bjorn.regnell@telecom.lth.se.

Planning with Templates

Intelligent Systems in Government

Advanced Heuristics in
Transportation & Logistics

Manufacturing Control

LOOK WHAT’S
COMING

www.computer.org/intelligent

