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Abstract. Constrained Natural Languages (CNLs) are becoming an increas-
ingly popular way of writing technical documents such as requirements specifi-
cations. This is because CNLs aim to reduce the ambiguity inherent within 
natural languages, whilst maintaining their readability and expressiveness. 

The design of existing CNLs appears to be unfocused towards achieving 
specific quality outcomes, in that the majority of lexical selections have been 
based upon lexicographer preferences rather than an optimum trade-off between 
quality factors such as ambiguity, readability, expressiveness, and lexical  
magnitude. 

In this paper we introduce the concept of ‘replaceability’ as a way of identi-
fying the lexical redundancy inherent within a sample of requirements. Our 
novel and practical approach uses Natural Language Processing (NLP) tech-
niques to enable us to make dynamic trade-offs between quality factors to opti-
mise the resultant CNL. We also challenge the concept of a CNL being a  
one-dimensional static language, and demonstrate that our optimal-constraint 
process results in a CNL that can adapt to a changing domain while maintaining 
its expressiveness. 

1   Introduction 

Eliminating the ambiguity inherent within a requirement specification is the seem-
ingly unattainable ambition of the systems engineering zealot. This is because ambi-
guity is characteristic of poor quality requirements, and poor quality requirements are 
characteristic of challenged projects [1]. It has been suggested that the ambiguity of a 
requirement can be reduced if the lexicon and/or grammar used to express the re-
quirement is constrained to a subset with stronger properties [2][3]. A Constrained 
Natural Language (CNL) is a subset of a Natural Language (NL) that has been re-
stricted with respect to its grammar and/or lexicon [3]. By restricting the grammar, 
complicated sentence structures can be simplified. By restricting the lexicon, unnec-
essary linguistic variations can be removed, and retained words can be less ambigu-
ously defined.  

One of the biggest criticisms of CNLs is that they tend to be unnatural to read and 
write [4]. Goyvaerts [5] claims that writing requirements in controlled languages is 
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20% more time consuming that writing requirements in unrestricted NLs. Somers [4] 
highlights the importance of involving domain authors in all stages of CNL develop-
ment to ensure the resultant lexicon is natural w.r.t. the domain of interest.  

There is a tendency to assume that reduced expressiveness is an unavoidable con-
sequence of constraining a NL. This is because the expressiveness of a language is a 
measure of the variety of lexical and grammatical constructions it allows [4]. Since a 
CNL constrains such lexical and grammatical constructions – the subsequent expres-
siveness of the language is expected to decline. Moreover, existing CNLs are static 
languages that cannot adapt to express words that have not been designated in ad-
vance. CNLs are typically derived from large samples of naturally occurring text in a 
particular domain [6]. In many cases, a combination of domain experts and automatic 
parsers are used to extract domain keywords and reoccurring phrases respectively [7]. 
Fundamentally, this implies that a typical CNL is specific to a particular domain 
[7][8], and is largely driven by the lexicographers preference. Furthermore, there is a 
lack of evidence in the literature to confirm whether or not the design of existing 
CNLs has been rigorously focused upon achieving specific quality outcomes such as 
unambiguity, readability, and expressiveness. 

In this paper we present our fully automatable approach to optimally-constraining 
the lexicon of a CNL. Our approach aims to exploit important semantic relationships 
between the words in a requirements sample as a way of logically reducing a NL to 
achieve a desired level of language quality. We propose a new concept called ‘re-
placeability’ which builds upon an existing concept of ‘similarity’. We also show how 
our CNL lexicon remains able to adapt to accommodate new lexical terms that are en-
countered post its design. 

This is significant because existing CNLs tend to be the static result of lexicogra-
pher analysis. It is not clear how an existing CNL would be adapted to a new domain 
– or even how it could be expanded to accommodate a larger sample of text from the 
same domain. It is of course unlikely that the original lexicographers would always be 
available to extend their original analysis – and even if they were, it is unlikely that 
the results would be consistent. On the other hand, we are proposing a new applica-
tion for existing and well-understood Natural Language Processing (NLP) techniques 
that practically eliminates the need for a lexicographer in the design of a CNL. 

2   Optimal-Constraint Process – Design Goals 

There are two fundamentally different constraints underlying any CNL. Firstly there 
is the constraint on the words that constitute each part of speech (the lexicon), and 
secondly there is the constraint on the grammatical constructions that will be allow-
able in the language. The focus of this paper is on optimally-constraining the lexicon. 
We do not address the issue of constraining the grammar.  

Three design goals have been selected to optimally constrain the lexicon – that is to 
be readable, sufficiently expressive, and unambiguous. Our objective is to achieve the 
perceived advantage of CNLs (reduced ambiguity), whilst also attempting to overcome 
the perceived disadvantages (reduced readability and reduced expressiveness).  
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2.1  Design Goal #1: To Be Readable 

A popular criticism of CNLs is that they are unnatural to read and write [4]. Swaffar [9] 
suggests that what makes text readable is that it “deals with topics of interest or familiar 
to the intended readers (so that it allows for communication and expressions from within 
readers' frame of reference).” When a lexicon is constrained, it is unlikely that all words 
from within the readers' frame of reference will be contained within the constrained 
lexicon. Consequently, readability is expected to decline.  

We believe that when constraining a language there must be cognisance paid to the 
inclusion of words from the readers' frame of reference. Since we are proposing to de-
rive the CNL from a corpus of existing requirements within the domain of interest, the 
readers' frame of reference should present itself within the text. For example, by 
counting the frequency of each disambiguated word within the sample, we gain some 
insight into the popularity of certain words to express certain meanings. We can then 
use this insight to help ensure that conventional terms are retained and unconventional 
terms are replaced within the CNL. 

2.2   Design Goal #2: To Be Sufficiently Expressive 

It appears that there are two fundamentally different schools of thought on the concept 
of expressiveness. Gnesi et al [10] and Fabbrini et al [11] imply that expressiveness 
relates to the ability of a language to convey meaning to a human reader, whereas 
Nyberg et al [4] believe that expressiveness of a language is some measure of the va-
riety of lexical and grammatical constructions it allows (irrespective of the reader). 
Here we have two different measures of the size of a language – one relates to the 
number of semantic meanings that can be generated by a language, whereas the other 
relates to the number of syntactic expressions that can be generated (which is nor-
mally infinite since most useful grammars allow recursion).  

Figure 1 shows that a CNL consists of a grammar and a lexicon of ‘L’ words. The 
grammar consists of ‘n’ grammatical rules that apply to its eight main parts of speech 
(POS) [13]. Each POS consists of ‘W’ words, with each word having ‘P’ meanings. 
The CNL can generate ‘E’ expressions, with each expression having ‘M’ meanings as 
interpreted by the ‘n’ stakeholders. The domain of interest is scoped by ‘R’ require-
ments. Each requirement is an expression that may (or may not) be able to be gener-
ated by the CNL – this is indicated as 0..1 multiplicity [12].  

The expressiveness of a CNL is some measure of the variety of lexical and gram-
matical constructions it allows [4]. In our previous work, we proposed two measures 
of expressiveness as follows [12]: 

 Syntactic Expressiveness is the size of the set of unique ‘E’ expressions that can 
be generated from the CNL.  

 Semantic Expressiveness is the size of the set of unique ‘M’ meanings that can be 
generated from the CNL.  

To achieve our design goal of sufficient expressiveness means that when removing 
‘L’ words from the lexicon we must ensure that the ‘M’ meanings that are relevant to 
the ‘R’ requirements from our domain of interest are preserved, i.e. the intention is 
only to remove redundant and irrelevant words. 



206 S. Boyd, D. Zowghi, and V. Gervasi 

 

Fig. 1. CNL Abstract Model 

2.3   Design Goal #3: To Be Unambiguous 

The IEEE Recommended Practice for Software Requirements Specifications [14] 
states that “An SRS is unambiguous if, and only if, every requirement stated therein 
has only one interpretation.” This definition is consistent with that of Kamsties [15], 
Davis [16] and Harwell [17]. According to Gause and Weinberg [18], ambiguity has 
two sources, missing information and communication errors. Missing information has 
various reasons. For instance, humans make errors in observation and recall, tend to 
leave out self-evident and other facts, and generalize incorrectly. Communication er-
rors occur because of expression inadequacies in the writing. 

There is a relationship between the expressiveness of a language, and the number 
of communication errors that result from the use of the language. Typically, the more 
constrained the lexicon, the more polysemous each word needs to be to maintain se-
mantic expressiveness. Kamprath [7] believes that reducing polysemy is one way of 
reducing communication errors, since constraining each lexical term to a single mean-
ing prevents miscommunication of the word sense. The corollary to this is of course 
an increase in lexical magnitude. 

We believe that there are certain parts of speech that encourage authors to “leave 
out self-evident and other facts, and to generalize incorrectly”. The parts of speech we 
are referring to are adjectives and adverbs. It is commonly felt that restricting the use 
of adjectives and adverbs should be a goal of any CNL: authors should be forced into 
using proper nouns (rather than adjectives and common nouns) and articulating per-
formance requirements unambiguously (rather than using adverbs). 

3   Optimal-Constraint Process – Description 

3.1   Introducing Replaceability 

In this section we discuss the concept of replaceability and propose a measure that 
can be used to optimise the constraining process with respect to our chosen Design 
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Goals. Before defining replaceability, it is important to understand the underlying 
concept of similarity. Measures of similarity quantify how much two meanings are 
alike and are therefore useful in identifying redundancy in a language. Similarity is a 
well-defined subset of relatedness which includes synonyms, hypernyms and hypo-
nyms/troponyms [21]. 

Whilst Miller and Charles [22] claim that similarity tools provide some measure as 
to the degree of contextual interchangeability, or the degree to which one word can be 
substituted by another in context, they can be misleading if used carelessly. For ex-
ample, there is a path length of four between ‘apple#n#1’1 and ‘orange#n#1’ in 
WordNet (where path length is defined as the number of concepts between the two 
terms), and while an apple and orange are similar in that they are both edible fruit – it 
would be misguided to think that either term could replace the other in a CNL. 

There is also the issue that whilst all ‘apples’ are ‘edible fruit’, not all ‘edible fruit’ 
are ‘apples’. In other words, whilst you may be able to replace a specific concept with 
a more general concept (i.e. hypernym) – you should not replace a general concept 
with a more specific concept (i.e. hyponym). This presents an ontological dimension 
to the CNL design. The question here is how the relative positioning of a concept 
within the semantic network affects its ability to be replaced by another (similar) con-
cept. Whilst “similarity” is a specialised form of “relatedness” [21], we propose that a 
new concept “replaceability” be introduced that represents a specialised form of 
“similarity”. 

Replaceability: We define replaceability(x,y) as a measure of the ability of a concept 
‘x’ to be replaced by another concept ‘y’ given a particular domain. Replaceability is 
asymmetric because there is no guarantee that the inverse replacement will be valid. 
This is particularly the case where a concept has been replaced by its hypernym (for 
instance, not all ‘edible fruit’ are ‘apples’). We believe that “replaceability” should be 
a function of similarity, conventionality, polysemy, and lexical ontology. We propose 
the following measure: 

Replaceability x,y
` a

= Similarity x,y
` a
A

F y

F x

fffffffff

A

P x

P y

ffffffff

 
Where: 

1. Fx/Px is the frequency/polysemy of x within the requirements sample, and 
2. ‘y’ is a synonym (or hypernym) of ‘x’, and 
3. Similarity(x,y) ≥ Similarity Threshold, and 
4. Similarity is a unity-normalised measure. 

Then: 
Replacebility(x,y) ≥ 1 means x can be replaced by y. 
Replacebility(x,y) < 1 means x cannot be replaced by y. 

 

(1) 

This proposed measure for replaceability addresses our three design goals. Read-
ability is addressed since replaceability(x,y) is increased when ‘y’ is used more  
frequently in the domain than ‘x’. Communications ambiguity is addressed since re-
placeability(x,y) is increased when ‘y’ is less polysemous than ‘x’, and ambiguity re-
lating to “incorrect generalisation” is addressed by considering the lexical ontology 
and limiting replacements to synonyms and similar hypernyms only. Semantic  

                                                           
1 We use the notation word#pos#sense to unambiguously define the meaning of word. ap-

ple#n#1 refers to the first sense of the noun apple in WordNet. 
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Expressiveness is addressed since a word will only be replaced if there is another 
word that is a synonym or a (similar) hypernym, and that is used more frequently 
and/or less polysemously. If there is not a word that meets this criteria, then the origi-
nal word is retained in the CNL. I.e. if a words meaning cannot be semantically ex-
pressed by another lexical term, then the original lexical term is retained. 

Despite the replaceability rule whereby a word can only be replaced by its syno-
nym or similar hypernym, there remains a potential for “incorrect generalizations”  
resulting in an increase in ambiguity. A good example of this might be if our require-
ments ReqtNL sample was extracted from the specification for the Control Computer 
within an Automatic External Defibrillator (AED) – a piece of medical equipment 
used in the defibrillation of the heart. Within this specification, the verbs “reboot#v#1 
-- cause to load an operating system and start the initial processes” and “resusci-
tate#v#1 -- cause to regain consciousness” would probably be encountered. Counting 
the nodes between these two verbs in WordNet [23]  we get a path length of two (re-
boot#v#1  resuscitate#v#1), which means that the concepts are very similar. Given 
our proposed measure for replaceability, there is great potential for resuscitate#v#1 to 
become the CNL term to replace reboot#v#1 (given the hypernymic relationship). It 
would (of course) be totally unconventional to ever replace the verb reboot#v#1 with 
its hypernym resuscitate#v#1. If this “incorrect generalisation” was permitted to oc-
cur, then the CNL may well increase ambiguity (rather than achieving its goal to be 
unambiguous). 

In the context of our AED example, the verb reboot#v#1 would likely be used 
when talking about the control computer, and the verb resuscitate#v#1 would likely 
be used when talking about the human patient. Interestingly, the shortest path between 
the object nouns computer#n#1 and human_being#n#1 in WordNet is quite long (at a 
length of 16) [23]. So although the two verbs are very similar, the fact that their object 
nouns are so dissimilar may provide the extra dimension of information that is re-
quired to prevent this “incorrect generalisation”. So far we have not discussed the 
scope of words (i.e. ‘x’ and ‘y’) that are measured against each other for replaceabil-
ity. For example, is it possible that we could use our knowledge of dissimilarity  
between the object nouns computer#n#1 and human_being#n#1 to prevent the com-
parison of reboot#v#1 and resuscitate#v#1 (such that reboot#v#1 does not get  
replaced by resuscitate#v#1)? 

The replaceability measure that we presented above will work for any scope of 
words and is not sensitive to inter-relationships between parts of speech. We propose 
that instead of modifying the replaceability measure to account for inter-relationships 
between parts of speech, we introduce the concept of Replaceability Matrices to manage 
the scope of words that are appropriate to be compared to each other for replaceability. 
By appropriate, we mean that the words within a single Replaceability Matrix are all 
from the same part of speech, and all associate with similar words from grammatically 
related parts of speech (we discuss this in more detail (for verbs) in Section 4.1.1).  

3.1.1   Replaceability Matrices 
The Replaceability Matrix in Table 1 is effectively an N2 matrix that we will use to 
capture replaceability measurements for words from the same part of speech that are 
associated with similar words from related parts of speech. We will use the Replace-
ability Matrix to constrain the lexicon, since we will be making decisions on which 
words are to be replaced. 
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Table 1. Replaceability Matrix 

NL XNL(FX)(PX) YNL(FY)(PY) ZNL(FZ)(PZ) 
XNL(FX)(PX) Repl(XNL,XNL) Repl(XNL,YNL) Repl(XNL,ZNL) 
YNL(FY)(PY) Repl(YNL,XNL) Repl(YNL,YNL) Repl(YNL,ZNL) 
ZNL(FZ)(PZ) Repl(ZNL,XNL) Repl(ZNL,YNL) Repl(ZNL,ZNL) 

To understand Table 1, it is essential to understand that XNL is a concept that is 
comprised of a NL lexical term X as well as a PoS and a sense (resulting from the 
shallow parsing and Word Sense Disambiguation (WSD) respectively). Note that (FX) 
means the Frequency of XNL as relevant to this Replaceability Matrix. Therefore, if 
XNL happens to be a verb that is also used with other dissimilar subject (or object) 
nouns, then it would have other FX’s as applicable to each of the other Replaceability 
Matrices. Similarly, (PX) means Polysemy of XNL with respect to this specific Re-
placeability Matrix, i.e. (PX) does not mean the polysemy of XNL as found in a dic-
tionary. Using a dictionary will likely over-inflate the polysemy count of many words 
that may be unambiguously used within the domain. YNL and ZNL have been used in 
Table 1 to give the impression that typically there will be a number of concepts being 
compared in a Replaceability Matrix. Each intersecting cell in the Replaceability Ma-
trix represents the Replaceability between two concepts, i.e. Repl(XNL,YNL) measures 
the ability of concept XNL to be replaced by concept YNL. The following rule applies. 

Rule #1: The concept at the start of a row is replaced by the concept corresponding to 
the column having the highest replaceability value on that same row. 

Notice that it is possible for a concept to be selected as the replacement for itself – 
which in effect means the original NL term is retained. This is exactly how the CNL 
achieves its goal of being sufficiently expressive. 

3.2   Optimal-Constraint Process 

Figure 2 presents the process that we have developed to optimally constrain the lexi-
con of a CNL. The process is optimised in the sense that we employ a replaceability 
measure that is focused on achieving our design goals. One of the major challenges 
with optimally constraining a lexicon is determining which words are redundant or ir-
relevant and can be removed without reducing the semantic expressiveness of the lan-
guage for a selected domain of interest. One of the novel contributions of this research 
is the application of existing NLP tools and techniques to this process, such that the 
result is goal-optimised and repeatable. 

Figure 2 shows that the design process begins with a NL requirement (ReqtNL). 
The first step is to shallow parse the ReqtNL to determine the parts of speech and 
grammatical phrases. Shallow Parsing can be used to perform tokenisation, POS tag-
ging, and phrase boundary detection (e.g. noun phrases, verb phrases, prepositional 
phrases, etc.) such that grammatical relations can be identified [19]. Word Sense Dis-
ambiguation (WSD) would then occur aiming to associate a given word in a passage 
of text with the authors original intended meaning or sense [20]. At this point, each 
word in each ReqtNL could be represented in the form of word#pos#sense. 
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Fig. 2. Optimal-Constraint Process Flowchart 

The ‘Optimise?’ and ‘Translate?’ decision points reflect two fundamentally differ-
ent phases in the life of a constrained lexicon. The first phase could be considered the 
‘setup phase’, where the ReqtNL sample would be injected into the optimal-
constraining process to update the Replaceability Matrices (recall Section 3.1.1). The 
second phase could be considered the ‘operating phase’ where the established Re-
placeability Matrices are then used to replace each NL Requirement (ReqtNL) with its 
semantically equivalent CNL alternative (ReqtCNL). In ‘setup phase’ the constraining 
process would typically be optimising but not translating. In ‘operating phase’ the 
constraining process would typically be translating but not optimising. The ‘Transla-
tion Possible?’ decision allows for the event whereby ReqtNL contains terms that have 
no CNL translation in the established Replaceability Matrices. In this case it is  
possible to optimise the Replaceability Matrices to accommodate the new concept – 
ensuring that the constrained lexicon maintains sufficient expressiveness. Ideally, in-
experienced authors would be prevented from optimising the CNL such that is does 
not accommodate their ‘bad habits’. 

4   Optimal-Constraint Process – Design Decisions and Rationale 

Whilst the Optimal-Constraint Process Description (Section 3) is intended to be non-
implementation specific and thus future-proof, the design decisions presented in this 
section are based upon the capability of currently available technology. The expecta-
tion is that as NLP technology improves, future researchers can revise these decisions 
without needing to revisit the Optimal-Constraint Process Description. 

4.1   Parts of Speech to Constrain 

Whilst it may be theoretically possible to apply the optimal-constraint process to each 
of the eight main parts of speech, there are two reasons why we currently limit the ap-
plication of our process to verbs.  

Firstly, subject and object nouns in requirement text are often domain-specific 
proper nouns (e.g. the “SPS-49 Air Search Radar” rather than the “long-range high-
power radar”). The use of proper nouns also means that adjectives are rarely used in 
requirement text (in fact, experts often recommend against the use of adjectives and 
adverbs as they are seen as vague words [24]). Function words (determiners,  
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prepositions, conjunctions, and pronouns) are already closed parts of speech and it 
could be argued that further constraining the lexicon in these parts of speech is unnec-
essary. Interjections are, by their nature, inappropriate for use in technical writing 
[13]. Therefore, when constraining the lexicon for writing requirements, it could be 
argued that verbs are the only part of speech that should be constrained in this way. 
Given there are over 29,000 verbs in the English language [25] and that on average, 
verbs are the most polysemous part of speech [23], constraining verbs seems to be  
necessary.  

Secondly, the semantic networks that are in existence today do not manage hy-
pernymic or hyponymic (/troponymic) relationships between these other parts of 
speech. Presently they are limited to nouns and verbs only. Miller [26] states that up-
dating WordNet with is-a relationships for adjectives and adverbs is a work in  
progress. 

4.1.1   Scope of Replaceability Matrices for Verbs 
In Section 3.1 we introduced the concept of the Replaceability Matrix to be used as 
the mechanism to manage the scope of words from the same part of speech, that are 
associated with similar words from grammatically related parts of speech. For verbs, 
the grammatically related parts of speech would be the subject noun and object noun 
(transitive verbs). The following rule is proposed. 

Rule #2: If 
VerbA#Verb relates to SubjectA#Noun and ObjectA#Noun, and 
VerbB#Verb relates to SubjectB#Noun and ObjectB#Noun; 
then, VerbA and VerbB can only exist in the same Replaceability Matrix if SubjectA 

and SubjectB are similar AND if ObjectA and ObjectB are similar. 

4.2   Shallow Parsing and Word Sense Disambiguation 

We decided to use the Memory Based Shallow Parser (MBSP) [27] to identify phrase 
chunks in simple sentence requirements. Daelemans [27] claims that the MBSP is 
over 90% accurate for noun and verb phrase detection, making the MBSP one of the 
more accurate shallow parsers available. Manning [19] suggests that whilst NLP tag-
gers and chunkers can mine data automatically, it is often the case that in order to ob-
tain accurate results, the process must be highly interactive. We therefore decided to 
use a human inspection to confirm the results of the MBSP. 

Although there are automated WSD tools freely available, we trialled both Word-
Net::SenseRelate [28] and Sense Learner 2.0 [29] with both tools failing to accurately 
disambiguate the requirement text in the majority of cases. The disappointing results 
are believed to stem from the fact that WSD tools rely on contextual information to 
make a probabilistic determination on the sense of each word. For example, to disam-
biguate a verb – the WSD tool would look at the sense of the surrounding nouns. 
Given that in requirement specifications the surrounding nouns are typically domain 
specific proper nouns, the WSD tool was unable to make sense of the necessary con-
textual information. Interestingly, Manning finds that human performance is typically 
the upper bound for WSD [19]. For this reason we decided to manually disambiguate 
the sense of each word. We used WordNet [23] as the reference dictionary. 
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4.3 Similarity Measurement 

4.3.1   Similarity Measure  
The decision has been made to use WordNet [23] as the semantic network for defin-
ing and relating lexical concepts. WordNet is an on-line lexical reference system 
whose design is inspired by current psycholinguistic theories of human lexical mem-
ory. English nouns, verbs, and adjectives are organized into synonym sets, each repre-
senting one underlying lexical concept [26]. Synonym sets are then associated with 
other synonym sets via lexical relationships (e.g. synonymy, antonymy, hyponomy 
(“is a”), meronymy (“part of”), and morphological relationships). Word-
Net::Similarity [21] is a tool that draws upon the lexical network of WordNet to pro-
vide a measure of similarity between any two words from the same Part of Speech. 
There are three inputs required for this tool to operate: word1#pos#sense, 
word2#pos#sense, and the chosen Similarity Measure. The output is a value repre-
senting the similarity between the two concepts. We decided to use the Wu and 
Palmer [30] similarity measure since its developers described this measure to be most 
appropriate to a verb taxonomy.  

4.3.2   Similarity Threshold 
The Similarity Threshold is perhaps the most instrumental factor in trading off read-
ability, expressiveness, ambiguity, and lexical magnitude. In general, the higher the 
Similarity Threshold the better the readability and expressiveness since there will be 
fewer lexical replacements (and therefore more of the original and conventional NL 
words will be available within the CNL lexicon). Ambiguity relating to “missing in-
formation” will likely be reduced with a higher similarity threshold, since there will 
be a reduced potential for “incorrect generalizations”. On the other hand, it may be 
possible to worsen the ambiguity relating to “communications errors” by raising the 
Similarity Threshold, since words may be prevented from being replaced by less 
polysemous, or more conventional alternatives. 

When the Similarity Threshold is increased, so too is the number of Replaceability 
Matrices, since there will be reduced similarity between Subjects and between Ob-
jects. Additionally, within each of the Replaceability Matrices, there will be reduced 
similarity between verbs – resulting in reduced lexical replacements (and therefore 
less reduction in the CNL lexical magnitude). In summary, the disadvantages of hav-
ing a high Similarity Threshold are that the resulting CNL lexical may be large, and 
communications ambiguity may not be reduced by allowing less polysemous, or more 
conventional replacements. Whilst we cannot recommend one magical similarity 
threshold value that will work in all situations, we have found through our own em-
pirical research [12] that a similarity threshold of 0.6-0.7 seems to achieve a reason-
able trade-off between syntactic expressiveness and lexical magnitude when using 
WordNet::Similarity with the Wu & Palmer measure. 

5   Applying the Process – Example 

The following example aims to solidify the readers understanding of our process by 
applying it to a small sample of hypothetical requirements. Table 2 includes three 
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columns. ‘ID’ is an arbitrary requirement identifier, ‘ReqtNL’ and ‘ReqtCNL’ present 
the sample requirements before and after replacement respectively. We limit our ex-
ample to the constraining of verbs as per the decision made in Section 4.1. 

Table 2. Example Requirements – ReqtNL and ReqtCNL 

ID ReqtNL ReqtCNL 
Req-01 The radar shall track aeroplanes… The radar shall trackobserve aeroplanes… 
Req-02 The radar shall monitor helicopters… The radar shall monitorobserve helicopters… 
Req-03 The radar shall observe aircraft… The radar shall observe aircraft… 
Req-04 The 3d radar shall observe missiles… The 3d radar shall observe missiles… 
Req-05 The radar shall monitor the interface… The radar shall monitor the interface… 
Req-06 The captain shall be able to watch helicopters… The captain shall be able to watch helicopters… 
Req-07 The radar shall watch meteorological balloons… The radar shall watch meteorological balloons… 

Notice that Req-01-Req-07 have been simplified by truncating the Prepositional 
Phrases (PP) that follow the Subject-Verb-Object triple. This is because our process 
does not rely upon PP information to constrain verbs. For instance Req-06 should 
probably state “The captain shall be able to watch helicopters from standing on the 
bridge”. The first step of the process is to shallow parse the ReqtNL text. Using the 
Memory Based Shallow Parser [27] on Req-01 gives: 
[NP1

Subject The/DT radar/NNP NP1
Subject] [VP1 shall/MD track/VB VP1] [NP1

Object aeroplanes/NNP NP1
Object] 

Manually using WordNet, we can then disambiguate the sense of the subject “ra-
dar” as “measuring instrument in which the echo of a pulse of microwave radiation is 
used to detect and locate distant objects” which is a noun with sense #1. We repre-
sent this in shorthand as radar#n#1. Similarly we can do this for the verb “track” and 
object “aeroplane” to get track#v#2 and aeroplane#n#1 respectively. We could then 
continue this process for Req-02 to Req-07.  

Figure 3 illustrates the result of applying Rule #2 on our sample requirements. The 
“Verb” section in Figure 3 shows how we would determine the number and composi-
tion of each Replaceability Matrix based on identifying similar words from grammati-
cally related parts of speech, i.e. for verbs there is the relationship to similar subjects 
and similar objects (the ovals illustrate the groupings of similar concepts).2 

 

Fig. 3. Subject-Verb-Object Relationships 

                                                           
2 Note that throughout this example, we use WordNet::Similarity and the Wu & Palmer similar-

ity measure with a Similarity Threshold of 0.6. 
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Table 3 shows the first of the three Replaceability Matrices. As an example, con-
sider track#v#2 and observe#v#4 as our ‘x’ and ‘y’ respectively in the replaceability 
measure. Note that observe#v#4 is a hypernym of track#v#23 in WordNet [23].  

Table 3. Replaceability Matrix – Example 

        VERB 
 track#v#2 (1)(1) observe#v#4 (2)(1) monitor#v#1 (1)(1) watch#v#1 (1)(1) 

CNL 

track#v#2 (1)(1) 1 1.72 Not Hyp/Syn 0.67 observe#v#4 
observe#v#4 (2)(1) Not Hyp/Syn 1 Not Hyp/Syn 0.4 observe#v#4 

monitor#v#1 (1)(1) Not Hyp/Syn 1.72 1 0.67 observe#v#4 
watch#v#1 (1)(1) Not Hyp/Syn Not Hyp/Syn Not Hyp/Syn 1 watch#v#1 

Given that FX = 1, PX = 1, FY = 2, PY = 1, we get a replaceability measure of 1.72. 
Rule #1 states that the concept at the start of the row (track#v#2) is replaced by the 
concept corresponding to the column having the highest replaceability value on that 
same row (observe#v#4), so the replacement for track#v#2 is observe#v#4. This same 
process would be applied to all rows in the three Replaceability Matrices. Note that 
we have not shown the Replaceability Matrices for Monitor#v#1 or Watch#v#1 since 
these would only contain a single verb, and would end up being replaced by them-
selves – resulting in no constraining of the lexicon. The end result of this example can 
be seen in Table 2 where we have re-written the requirements using the constrained 
lexicon (ReqtCNL). 

Some key observations from Table 2 ReqtCNL column: Notice that “observe” seems 
to be a reasonable replacement for the verbs “track” and “monitor” in Req-01 and 
Req-02 respectively. Notice that “monitor” in Req-05 is not replaced since it was part 
of a different Replaceability Matrix (recall Figure 3). Notice that “watch” cannot be 
replaced in Req-07 since the Replaceability Matrix contains no other words which are 
hypernyms or synonyms (i.e. watch#v#1 is more general than the other terms).  

6   Limitations and Future Work 

6.1   Replaceability Measure 

Our proposed measure for replaceability is somewhat simplistic in that it does not put 
weightings on the relative importance of similarity vs. frequency vs. polysemy. For 
instance, when considering the replaceability(x,y), this means that a ‘y’ with half the 
polysemy count is equally as replaceable as a ‘y’ that is used twice as frequently. One 
improvement would be to introduce weightings, whereby we could weight the relative 
importance of similarity vs. frequency vs. polysemy. Furthermore we could even use 
requirement weightings to put some weighting on the importance of each lexical term. 

Another limitation with our proposed replaceability measure was to restrict lexical 
replacements to synonyms and hypernyms only in an attempt to prevent “incorrect 
generalisations” (you can’t compare apples with oranges!). In some cases, this may 
prove to be overly conservative, resulting in an under-constrained CNL. There are 

                                                           
3 The similarity between the two terms is 0.86. 
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possibly situations where it would be appropriate to replace a word with its coordinate 
(sibling) term. For example, consider the coordinate verbs save#v#2, store#v#1, and 
retain#v#3. It could be argued that a lexicon may not be optimally constrained if it 
were to retain all three of these terms. 

6.2   Integrating with Constrained Grammars 

The ideas presented in this paper on constraining a lexicon complement current re-
search on constraining grammars. For example, ACE [2], PENG [3], and Grover [6] 
all have a constrained grammar and a constrained lexicon of function words (deter-
miners, prepositions, conjunctions, and pronouns), but allow the user to invent their 
own list of content words (verbs, nouns, adjectives, adverbs). The problem with this is 
that there is no guidance given to the user as to how they might go about deriving 
such a list (e.g. how would they decide which verbs to include?). This of course is the 
very focus of our paper. Given that our process is specifically targeted at deriving 
such “content words” from the domain of interest, we strongly believe that the two 
branches of research are complementary (and non-overlapping). Combining these two 
areas of research may empower the analyst to do consistency checking and logical 
reasoning (for example they could query the resultant specification for all of the in-
puts and outputs of a specified subject noun by looking for verbs similar to “accept” 
and “provide” respectively). 

7   Conclusion 

The aim of this paper was to present a fully automatable NLP-based process for opti-
mally constraining the lexicon of a CNL. Our optimal-constraint process is significant 
since we have identified a new application for existing NLP tools and techniques that 
ensures a rigorous and repeatable outcome, and means we potentially no longer re-
quire a lexicographer to manually sift through the large volume of text and make 
(possibly unrepeatable and unjustifiable) subjective decisions on the content of the 
lexicon. We bounded ‘optimal-constraint’ by defining three design goals for the con-
strained lexicon, to be readable, sufficiently expressive, and unambiguous. We pro-
posed a new concept ‘replaceability’, which we argued provides a better measure than 
‘similarity’ as to the degree of contextual interchangeability, or the degree to which 
one word can be substituted by another in context. This is because ‘replaceability’ is a 
function of conventionality (frequency), polysemy, lexical ontology and similarity – 
rather than similarity alone, which we argue can be misleading. 

Although not a limitation of the process, we did find that the immaturity of WSD 
tools prevented total automation of the process. This limitation is considered to be 
time-sensitive, and reflective of the current (developmental) state of NLP technology. 
It is expected that as WSD algorithms and tools improve this limitation will cease to 
exist, and complete automation will be possible. Our process theoretically makes it 
possible to automatically generate a constrained lexicon from a sample of require-
ments. We believe that our process is pragmatic and accessible since it relies on noth-
ing more than existing NL requirement specifications, freely available NLP tools, and 
domain knowledgeable individuals. 
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The next stage in our longitudinal study will be to empirically validate that our op-
timal-constraint process actually does achieve its design goals by using a domain spe-
cific requirements sample. The resultant lexicon will then be the subject of a con-
trolled experiment to measure the effects on the respective quality factors (readability, 
expressiveness, and ambiguity).  
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