
Design Exploration and Experimental Validation

of Abstract Requirements

Roozbeh Farahbod1, Vincenzo Gervasi2, Uwe Glässer1, and Mashaal Memon1

1 School of Computing Science
Simon Fraser University
Burnaby, B.C., Canada

{rfarahbo,glaesser,mamemon}@cs.sfu.ca

2 Dipartimento di Informatica
Università di Pisa

Pisa, Italy
gervasi@di.unipi.it

Abstract. How can one cope with the notorious problem of establishing
the correctness and completeness of abstract functional requirements in
the design of control-intensive software systems prior to actually build-
ing the system? The answer given here explores the abstract state ma-
chine (ASM) paradigm: a versatile semantic framework for computa-
tional modeling of virtually all kinds of discrete dynamic systems. Com-
bining common abstraction principles from computational logic and dis-
crete mathematics, abstract state machines provide a universal model
of computation and an effective instrument for analyzing and reasoning
about complex semantic properties of real-world systems. In this paper
we introduce a novel ASM tool environment for making ASM ground
models executable on real machines. We present the CoreASM language
and the general architecture of the CoreASM engine together with a high-
level description of its extensibility mechanisms.

1 Introduction

Abstraction and formalization provide effective instruments for establishing crit-
ical system requirements by modeling the construction of software designs prior
to coding so that one can analyze and reason about specification and design
choices, fully understanding their deeper implications [1]. To this end, compu-
tational logic and discrete mathematics help eliminating typical deficiencies —
such as ambiguities, loose ends and inconsistencies — that often remain hidden in
informal requirements. Mathematical precision typically helps gaining a clearer
and more thorough understanding of the problem to be solved, thus reducing the
risk of making premature decisions with fatal consequences [2]. A higher level of
precision is needed with the increasingly intricate nature of system requirements.

A higher level of precision often brings with it increased complexity. Hence,
a question comes naturally: How can one cope with the notorious problem of



establishing the correctness and completeness of (abstract, functional) require-
ments in the design of a software-intensive systems prior to actually building
the system? The answer given here explores the abstract state machine (ASM)
paradigm [3], a universal mathematical framework for computational model-
ing of functional system requirements in terms of abstract operational semantic
properties. In addition to the semantic issues involved in gaining mathematical
precision as needed, we address and exemplify here the use of ASM abstraction
principles as an effective means for gradually developing a clear architectural
model of the system under design. The ASM approach encourages viewing the
behavior of a software system as evolution of abstract states, as represented by
the runs of an ASM model. This formalized yet abstract view is invaluable for
bridging the gap between informal requirements and precise specifications in the
earlier phases of system design. This angle also simplifies the task of construct-
ing models of requirements that are being extracted from implementations in
reverse engineering applications.

Abstract state machines are known for their versatility in modeling of algo-
rithms, architectures, languages, protocols and virtually all kinds of sequential,
parallel and distributed systems. The ASM formalism has been studied exten-
sively by researchers in academia and industry for more than 15 years with the
intention to bridge the gap between formal and pragmatic approaches. Lean-
ing toward practical applications of formal methods, this work resulted in a
solid methodological foundation for building ASM models. Widely recognized
applications include semantic foundations of industrial system design languages,
like the ITU-T standard for SDL, the IEEE language VHDL and its successor
SystemC, programming languages like JAVA, C# and Prolog, Web service de-
scription languages, communication architectures, embedded control systems, et
cetera (see the ASM website at www.eecs.umich.edu/gasm/ and the annotated
bibliography in [3]). Beyond the natural ASM habitat of hardware/software sys-
tems, computational modeling of social systems and cognitive behavior [4, 5]
addresses the broader scope of discrete dynamic systems that the very original
definition of ASMs intended to capture [6].

Model-based systems engineering can benefit from abstract executable spec-

ifications as a tool for design exploration and experimental validation through
simulation and testing (see Section 3.1). Building on experiences with two gener-
ations of ASM tools, a novel executable ASM language, called CoreASM, is being
developed [7, 8]. The CoreASM language emphasizes freedom of experimentation
and supports the evolutionary nature of design as a product of creativity. It is
particularly suited to Exploring the problem space for the purpose of writing an
initial specification. The CoreASM language allows writing of highly abstract and
concise specifications by minimizing the need for encoding in mapping the prob-
lem space to a formal model, and by allowing explicit declaration of the parts
of the specification that are purposely left abstract. The principle of minimal-
ity, in combination with robustness of the underlying mathematical framework,
improves modifiability of specifications, while effectively supporting the highly
iterative nature of specification and design.



This paper describes the open-source CoreASM environment, which consists
of a platform-independent engine for executing specifications and a graphical
user interface (GUI) for interactive visualization and control of CoreASM simu-
lation runs. The engine comes with a sophisticated and well defined interface,
thereby enabling development and integration of complementary tools, e.g., for
symbolic model checking [9] and automated test generation [10]. The design of
CoreASM is novel and the underlying principles are unprecedented among the ex-
isting executable ASM languages, including the most advanced ones: AsmL [11],
the ASM Workbench [12], XASM [13], and AsmGofer [14].

This paper is structured as follows. Section 2 summarizes the asynchronous
ASM computation model and its support for concurrency, reactive behavior, and
real-time aspects. Section 3 presents the CoreASM language, its features, and its
tool environment. Section 4 explores related work and Section 5 concludes the
paper.

2 Abstract State Machines

A central problem in computing science and discrete mathematics is the question
of how to precisely define the notion of algorithm. Traditionally, Turing machines
(TMs) have been used in the study of the theory of computation as a formal
model of algorithm [15]. For the study of semantic issues, however, this model
of computation is totally inappropriate, as there is typically a huge gap between
the abstraction level of a problem and the low-level computation of a TM sim-
ulating the corresponding algorithm. In contrast, any algorithm, regardless of
how abstract, can be modeled by an ASM at its natural level of abstraction.

Theoretical foundations of ASM computation models show that sequential

ASMs capture the notion of sequential algorithms in the aforementioned sense [16,
17]. Likewise, parallel ASMs (a.k.a. the basic ASM model) capture parallel al-
gorithms [18]. For the asynchronous computation model of distributed ASMs, a
generalization of the two other models, a formal proof that this model captures
distributed algorithms is not known. However, there is considerable empirical ev-
idence from practical applications that the asynchronous ASM model faithfully
reflects the intuitive understanding of the notion of distributed algorithm. We
briefly summarizes here the formal semantic framework of ASMs using common
notions and structures from discrete mathematics and computing science. For
further details, we refer to [3, 6].

The asynchronous computation model of distributed abstract state machines
(DASM), originally proposed in [6] (where ASMs are called evolving algebras),
defines concurrent and reactive behavior, as observable in distributed computa-
tions performed by any finite number of autonomously operating computational
agents, in terms of partially ordered runs.

A DASM M is defined over a given vocabulary V by its program PM and
a non-empty set IM of initial states. V consists of a finite collection of symbols
denoting mathematical objects and their relation in the formal representation
of M , where we distinguish domain symbols, function symbols and predicate



symbols. Symbols that have a fixed interpretation regardless of the state of M

are called static; those that may have different interpretations in different states
of M are called dynamic. A state S of M results from a valid interpretation of
all the symbols in V and constitutes a variant of a first-order structure, one in
which all relations are formally represented as Boolean-valued functions.

Concurrent control threads in an execution of PM are modeled by a dy-
namic set AGENT of autonomously operating computational agents. This set
may change dynamically over runs of M as required to deal with varying com-
putational resources. Agents of M interact with one another, and possibly also
with the operational environment of M , by reading and writing shared loca-
tions of a global machine state. The underlying semantic model regulates such
interactions so that potential conflicts are resolved according to the definition of
partially ordered runs.

PM consists of a statically defined collection of agent programs PM1
, ..., PMk

,
k ≥ 1, each of which defines the behavior of a certain type of agent in terms of
state transition rules. The canonical rule consists of a basic update instruction
of the form

f(t1, t2, ..., tn) := t0,

where f is an n-ary dynamic function symbol and the ti
′s (0 ≤ i ≤ n) are terms.

An update instruction specifies a pointwise function update, i.e., an operation
that replaces an existing function value by a new value to be associated with the
given function arguments. Complex rules are inductively defined by a number of
simple rule constructors allowing the composition of rules in various ways.

A computation of an individual agent of M , executing program PMj
, is mod-

eled by a finite or infinite sequence of state transitions of the form

S0

∆S0
(PMj

)
−→ S1

∆S1
(PMj

)
−→ S2

∆S2
(PMj

)
−→ · · · ,

such that Si+1 is obtained from Si, for i ≥ 0, by firing ∆Si
(PMj

) on Si,
where ∆Si

(PMj
) denotes a finite set of updates computed by evaluating PMj

over Si. Firing an update set means that all the updates in this set are fired
simultaneously in one atomic step.

Finally, M models interactions with a given environment through actions
and events that are observable at external interfaces, formally represented by
externally controlled functions. Of particular interest are monitored functions.
Such functions change their values dynamically over runs of M , although they
cannot be updated internally by agents of M . A typical example is the abstract
representation of global time. In a given state S of M , the global time (as mea-
sured by some external clock) is given by a monitored unary function now taking
values in a linearly ordered domain TIME. Values of now increase monotonically
over runs of M .



3 The CoreASM Project

The natural computation model and ease of abstraction of ASM is best used in
the early phases of requirements modeling, as shown by the many case reports
(see for example [19] where a number of RE techniques, including ASMs, are
evaluated comparatively on a benchmark problem). Yet, other ASM execution
environments target mostly the detailed design to pre-coding stages.

The CoreASM language and supporting tool architecture focus on early phases
of the software design process. In particular, we want to encourage rapid proto-
typing with ASMs, starting with mathematically-oriented, abstract and untyped
models and gradually refining them down to more concrete versions — a powerful
technique for specification with refinement that has been exploited in [3] and [20].
CoreASM maintains executability of even fairly abstract and incomplete models,
which in turn is important to make animation of the specification possible, and
to improve communication with the stakeholders during the requirements elici-
tation and analysis process. CoreASM is thus a lightweight formal method, which
can be fruitfully applied since the requirements elicitation phase without having
to pay huge time and effort penalties.

As we mentioned above, the CoreASM project is not the first attempt to
make ASMs executable. However the main commonality between our approach
and others is simply that they provide platforms which execute specifications
with ASM-like semantics. Beyond this, CoreASM departs in its approach and
spirit of principle from its predecessors. The project’s core ideology, consisting
of two simple tenets, both serves as a motivation and as a guide development of
the engine, the language, and the supporting tool environment:

– the preservation of pure ASM semantics, and
– ensuring freedom through extensibility.

First and foremost, the CoreASM engine should as closely as possible resemble
the pure mathematical definition of ASMs. Where other languages impose strict
typing conventions on the language, we do not sacrifice the freedom of typing
inherent in ASMs. Where other languages have adopted an object oriented view
of ASM elements, we preserve the view imparted by the original framework.

Since their inception, ASMs have been extended, within the bounds of their
original semantics [6], with many useful additions including those allowing for
the modeling of distributed systems and the modeling of distributed incremental
modification of data structures. Such extensibility coupled with the fact that
ASMs allow for the definition of new rule forms, data types and operators give
the system architect the freedom and flexibility required to fully explore the
problem space without restriction. CoreASM has been designed to offer the same
level of flexibility through extensibility via a well-defined plug-in architecture,
thereby preserving the freedom of experimentation that has proven to be so
fruitful in the development of ASM concepts. Other languages support limited
extensibility by writing classes or interacting with external C code, but none of
the previous proposals supports pervasive extensibility of syntax and semantics
as CoreASM does.



Our approach has also taken into account the extensibility of other software
with the CoreASM engine as a component. The platform independent engine,
with a well defined interface offering full control and observability of an ASM
run, lends itself to the possibility of interaction with many other useful analysis-
and design-support tools.

In this section we discuss the two most important benefits which stem from
the CoreASM project goals. We will see why executable specifications are impor-
tant for requirements engineering, and discuss how our extensible language and
engine along with supporting tools, provide real value to the systems architect.

3.1 Executable Specifications

Executable specifications offer many advantages that are of great relevance in
software engineering, and have been the subject of a continuous stream of re-
search. We will outline here only the major benefits for requirements specifica-
tion:3

– It is possible to animate an executable specification (e.g., execute it while
monitoring its execution), and observe its behavior, including the behavior
specified for unexpected cases which may be forced by explicitly altering the
environment.

– Execution traces constitute scenarios which can be presented and discussed
with the stakeholders, helping in requirements verification (by comparing
the specified behavior with the customers’ desired behavior), elicitation (as
the observation of the current behavior may prompt the discovery of new re-
quirements) and negotiation (as it is easier to re-assess different stakeholders’
priorities in case of conflicts when the discussion concentrate on a concrete
case).

– Executable specifications are also amenable to “debugging”, i.e., it becomes
possible to identify mismatches between the specifier’s intended behavior and
the specified one. Notice that this is different from the point above (where
the customers’ intended behavior and the specified one are compared), and
covers cases where the analyst or specifier has introduced errors while en-

coding the specification.

– Executable specifications have by definition a single, sound semantics —
which is the one enforced by the execution engine. While the semantics
itself may contain abstract elements (as is the case for ASMs), the scope
for abstraction is clearly defined, and there is no confusion possible between
abstraction and ambiguity, which is instead a weak point of purely descriptive
specifications.

– Finally, executability facilitates interoperability with other important tech-
niques, e.g. model checking, interaction tests through GUI mock-ups, au-
tomated regression testing, etc. All these techniques have been shown in a

3 See the classical reference [21] for a more extensive overview.



number of studies to be highly effective when appropriate, and a fully for-
mal, executable specification constitute a valuable asset to capitalize on in
these cases.

Despite all these advantages, executable specifications have not enjoyed ma-
jor popularity, mostly because they are typically harder to write than informal
or semi-formal specifications (e.g., natural language, UML use cases, scenarios,
etc.). In the CoreASM approach, great importance is placed on the return on
investment (ROI) that the analyst can expect. While the ROI has to be evalu-
ated on a case-by-case basis, many classes of practically relevant systems would
clearly benefit from the adoption of stronger specification methods. These include
safety-critical systems and high-assurance systems, but also more mundane ap-
plications where interoperability is important (e.g. protocol specifications, web
services descriptions, etc.).

The CoreASM approach places scalability of investment among its main goals.
With CoreASM, it is possible to write lightweight formal specifications: for exam-
ple, it supports untyped specifications, abstract and oracle functions, etc. At the
same time, it is possible to write heavy-duty, completely defined specifications
— a usage which borders with programming languages. The former approach is
more suited to upper requirements engineering, while the latter is more suited
to detailed specification. This is an innovative approach compared to other ASM
execution engines (e.g. [11]) which have offered only the fully formal level.

We claim that the CoreASM approach, with its lightweight model, extensibil-
ity with domain-specific constructs (which will be discussed in the next section),
and rich support environment, changes the traditional economics for executable
specifications. In effect, CoreASM extends many of the advantages of executable
specifications cited above to a whole new class of systems for which the invest-
ment of effort required by previous approaches was not justified. In this sense,
we are extending the range of systems for which writing executable specifications
is economically sensible.

3.2 Extensible Language

In keeping with the micro-kernel spirit of the CoreASM approach, most of the
functionality of the engine is implemented through plug-ins to a minimal kernel.
Such an architecture supports future extensions of the language through various
(possibly third-party) plug-ins. The architecture supports three main classes
of plug-ins: backgrounds, rules and policies, whose function is described in the
following.

– Background plug-ins provide all that is needed to define and work with new
backgrounds4, namely (i) an extension to the parser defining the concrete
syntax (operators, literals, static functions, etc.) needed for working with el-
ements of the background; (ii) an extension to the abstract storage providing

4 We call background a collection of mathematical domains and relations, packaged
together as a single unit. This concept is akin to that of multi-sorted algebra.



encoding and decoding functions for representing elements of the background
for storage purposes, and (iii) an extension to the interpreter providing the
semantics for all the operations defined in the background.

– Rule plug-ins are used to implement specific rule forms, with the understand-
ing that the execution of a rule always results in a (possibly empty) set of
updates to the state. Thus, they include (i) an extension to the parser defin-
ing the concrete syntax of the rule form; (ii) an extension to the interpreter
defining the semantics of the rule form.

– Policy plug-ins are used to implement specific scheduling policies for multi-
agent ASMs. They provide an extension to the scheduler, that is used to
determine at each step the next set of agents to execute. It is worthwhile to
note that only a single scheduling policy can be in force at any given time,
whereas an arbitrary number of background and rule plug-ins can be all in
use at the same time.

In CoreASM, the kernel only contains the bare essentials, that is, all that is
needed to execute only the most basic ASM. Other than a few essential rules
(e.g., assignment), all other rule forms (e.g., if/then/else, choose, forall) are
implemented as plug-ins in a standard library, which is implicitly loaded with
each CoreASM specification. Only the backgrounds of booleans (needed to ex-
press characteristic functions) and rules (needed to represent the rules in an
ASM specification) are included in the kernel. It should be noted however that
the kernel does not include all of the expected corresponding operations. For
example, while the domain of booleans (that is, true and false) is in the kernel,
boolean algebra (∧, ∨, ¬, etc.) is not, and is instead provided through a back-
ground plug-in. In the same vein, while universes are represented in the kernel
through set characteristic functions, the background of finite sets is implemented
as a plug-in, which provides expression syntax for defining them, as well as an
implicit representation for storing sets in the abstract state, and implementa-
tions of the various set theoretic operations (e.g., ∈) that work on such implicit
representation.

Finally, there is a single scheduling policy implemented in the kernel, namely
the pseudo-random selection of an arbitrary set of agents at a time, which is suf-
ficient for multi-agent ASMs where no assumptions are made on the scheduling
policy.

In addition to modular extensions of the engine, plug-ins can also register
themselves for Extension Points. Each mode transition in the execution engine is
associated to an extension point. At any extension point, if there is any plug-in
registered for that point, the rule provided by the plug-in at registration time is
executed before the engine proceeds into the new mode. Such a mechanism en-
ables extensions to the engine’s life-cycle which facilitates implementing various
practically relevant features such as adding debugging support, adding a C-like
preprocessor, or performing statistical analysis of the behavior of the simulated
machine (e.g., coverage analysis or profiling). A plug-in, for example, could mon-
itor the updates that are generated by a step before they are actually applied
to the current state of the simulated machine, possibly checking conditions on



these updates and thus implementing a watch (i.e., displaying updates to cer-
tain locations) or a watch-point (i.e., suspending execution of the engine when
certain updates are generated), which are both useful for debugging purposes.

As already mentioned, the CoreASM engine is accompanied by a standard

library of plug-ins including the most common backgrounds and rule forms (i.e.,
those defined in [3]), an extension library including a small number of specialized
backgrounds and rules, and API specifications for writing new plug-ins that can
easily be integrated in the environment. Extension plug-ins must be explicitly
imported into an ASM specification by an explicit use directive.

3.3 Tool Environment

To facilitate the integration of executable ASMs with other analysis- and design-
support tools, the CoreASM engine provides an API offering full control over
the ASM being executed and its current run. This allows tool integrators to
use CoreASM as a component of a larger requirements modeling and validation
environment.

Using this API, an ASM can be explored by stepping forward or rolling
back the current run. The API also allows for the monitoring and modification
of abstract states between steps. This facility to actively interact and modify
abstract states gives external tools the ability to behave as if they are part of
the environment of the machine being monitored.

A GUI-based integrated modeling environment (IME) is currently under de-
velopment [22], at the heart of which lies the CoreASM engine (see Figure 1).
This user-friendly visual solution for model design and validation will provide
a complete platform for accessing and using a variety of complementary tools.
The interface organizes information relevant to state transition into different
views, visually highlights inconsistencies of the model, and gives the user the
ability to compare and contrast state and updates produced by different steps
(e.g., see the state view at the top right corner of Figure 1). In addition to the
ease that the IME shall bring to manual validation, integrated machine-aided
tools such as model checking and run-time assertion checking for abstract states
of the ASM run are also slated for development. Work is currently ongoing on
the addition of user interaction commodities as automatic syntax highlighting,
automatic completion, and visual control flow-based model development using
control state ASM activity diagrams.

In Figure 2(a) we show as an example a fragment of a CoreASM specification
for an automated teller machine (ATM).5 The example assumes an asynchronous
interaction model between three autonomously operating entities involved in
ATM transactions, namely: the ATM, a user, and the bank (see Figure 2(b)).
Due to space considerations, the example is restricted to withdrawal transactions
only.

Basically, the ATM control forms a distributed embedded system which is
modeled in terms of a DASM consisting of three separate agents (each of which

5 This example was originally introduced in [23].



Fig. 1. Snapshot of the CoreASM IME (under development)

Fig. 2. a) Part of an ATM specification in CoreASM; b) ATM agent and its environment



represents one of the interacting entities). Nonetheless, one may start by model-
ing only the ATM agent, and by assuming that the other agents are part of the
global environment of the ATM manager, as per Figure 2(b). This view allows
us to focus on the key behavioral aspects first. In subsequent refinement steps,
this model can easily be extended to a DASM by making the behavior of the
two other agents explicit (i.e., by adding the specification of the corresponding
ASM agents).

The familiar syntax (akin to that of imperative programming languages) re-
sults in a specification that is both simple to create for requirements engineers
and system designers and difficult to misinterpret for those responsible for im-
plementation. Notice how CoreASM provides support for abstraction by allowing
the specifier to omit the body of a rule and mark it as abstract instead, by using
the syntax

rule R = abstract narrative text.

When the abstract rule is invoked, the engine executes it symbolically, which
in the case of interactive execution is obtained by presenting to the user the
given narrative, and optionally offering to manually update the state as it is
expected that the concrete rule should do had it already be defined.

In contrast, many heavy-duty specification methods would have request a
fully-concrete, complete specification of the ATM and of its environment before
being able to perform any behavioral analysis.

4 Related Work

Machine assistance plays an increasingly important role in making writing and
analyzing complex specifications practical. Model-based systems engineering de-
mands for abstract executable specifications as a basis for design exploration
and experimental validation through simulation and testing. The role of exe-
cutable requirements has been recognized since the emergence of requirements
engineering as an autonomous discipline [24], and different forms of executable
requirements are still today advocated as a most effective means to ease rapid
prototyping, HCI design, validation and verification [25–27]. Thus it is not sur-
prising that there is a considerable variety of executable requirements languages
that have been developed over the years.

Based on experience with various experimental ASM interpreters [28–31],
and fundamental concepts of making ASMs executable on real machines [32],
a second generation of more mature ASM tools and tool environments was de-
veloped: AsmL (ASM Language) [11], the ASM Workbench [12] and the Xasm

(Extensible ASM) language [13] are all based on compilers, while AsmGofer [14]
provides an ASM interpreter.6 The most prominent one is AsmL, developed by
the Foundations of Software Engineering group at Microsoft Research. AsmL

6 We focus here on the more common and well-known ASM tools. For a complete
overview, see also [3], Sect. 8.3.



is a strongly typed language based on the concepts of ASMs but also incorpo-
rates numerous object-oriented features and constructs for rapid prototyping of
component-oriented software, thus departing in that respect from the theoretical
model of ASMs; rather it comes with the richness of a fully fledged program-
ming language. At the same time, it lacks any built-in support for dealing with
distributed systems. Being deeply integrated with the software development,
documentation, and runtime environments of Microsoft, its design was shaped
by practical needs of dealing with fairly complex requirements and design spec-
ifications for the purpose of software testing; as such, it is oriented toward the
world of code. This has made it less suitable for initial modeling at the peak of
the problem space and also restricts the freedom of experimentation.

In contrast to CoreASM, all the above languages build on predefined type
concepts rather than the untyped language underlying the theoretical model
of ASMs; none of these languages comes with a run-time system supporting
the execution of distributed ASM models; only Xasm is designed for systematic
language extensions and in that respect is similar to our approach; however, the
Xasm language itself diverts from the original definition of ASMs and seems
closer to a programming language.

5 Conclusion and Future Work

We have outlined in this paper the design principles of CoreASM, a practical
tool environment for building ASM ground models for the purpose of separating
specification and design (problem solving) from construction and coding (engi-
neering). The development of our extensible specification execution environment
will be beneficial for both researchers who will be able to test future extensions
to ASMs with our engine, and for industry who will use the engine and its
extensions to make more precise and reliable software specifications. Sensible
instruments and tools for writing an initial specification call for maximal flexi-
bility and minimal encoding, as a prerequisite for evolutionary modeling which
requires easily modifiable formal specifications. The aim of the CoreASM effort
is to address this need for abstractly executable specifications.

CoreASM addresses practical needs of hardware/software system designers,
architects, and requirement engineers dealing with abstract behavioral descrip-
tions of functional requirements. An often preferred style for describing behav-
ior in early design stages is pseudocode. Designing with pseudocode enhances
intellectual control over complex computational problems as it avoids getting
caught in irrelevant details by hiding such details in abstract data structures.
To this end, CoreASM programs resemble pseudocode but, at the same time,
have a precisely defined meaning, so one can check and experimentally validate
requirement specifications by executing CoreASM programs. Combining declar-
ative, functional and imperative styles as needed provides enormous flexibility
for choosing a level of abstraction that is most appropriate.

To the requirements practitioner, CoreASM offers a way to express precisely
the intended semantics, including notation to declare what has been purpose-



fully left abstract. Coupled with sound refinement principles and interoperabil-
ity with other tools, CoreASM supports rational elicitation, animation, validation
and verification. To the domain expert, CoreASM provides a workbench to define
domain-specific languages by writing simple plug-ins which specify merely the
extensions to the basic ASM semantics, thus vastly reducing the entry barrier to
the definition and development of domain-specific constructs. To the RE theorist,
CoreASM proposes the theoretically well-founded, operational ASM specifica-
tion method whose computational properties and capabilities have been formally
proved, and has a record of having successfully supported the specification of
literally hundreds of problems of all classes (embedded systems, communication
protocols, computer languages, distributed systems, web services, social systems,
etc.).

In future work we intend to extend the CoreASM engine by providing various
rule and background plug-ins to support commonly used abstract data structures
and mathematical functions. We are also planning to enrich the CoreASM tool
suite by providing more assistance to the specification writer through syntax-
guided editing, completion and highlighting, and by facilitating the interoper-
ability with other tools. Development work is planned in the area of trace visu-
alization, and implementation of the CoreASM engine as a plug-in for the open
source Eclipse integrated development environment [33] is being investigated.

Acknowledgment. The authors would like to thank the anonymous reviewers for

their many suggestions which led to a significant improvement of the paper.

References

1. Berry, D.: Formal Methods: The Very Idea. Science of Computer Programming
42(1) (2002) 511–27

2. Huckle, T.: Collection of software bugs. Technical report, Technical University
Munich (2004) Last visited Sep. 2005, http://www5.in.tum.de/∼huckle/bugse.
html.

3. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag (2003)

4. Brantingham, P.L., Glässer, U., Kinney, B., Singh, K., Vajihollahi, M.: A Compu-
tational Model for Simulating Spatial Aspects of Crime in Urban Environments.
In: Proc. IEEE International Conference on Systems, Man and Cybernetics. IEEE
Press (2005) 3667–3674

5. Glässer, U., Rastkar, S., Vajihollahi, M.: Computational Modeling and Experimen-
tal Validation of Aviation Security Procedures. In: To Appear in the Proceedings
of the IEEE International Conference on Intelligence and Security Informatics (ISI-
2006). (2006)

6. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, E., ed.: Specifica-
tion and Validation Methods. Oxford University Press (1995) 9–36

7. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. In Beauquier, D., Börger, E., Slissenko, A., eds.: Proc. of the 12th Int’l
Workshop on Abstract State Machines. (2005) 153–165



8. Farahbod, R., et al.: The CoreASM Project. (2005) http://www.coreasm.org.

9. Del Castillo, G., Winter, K.: Model Checking Support for the ASM High-Level
Language. In Graf, S., Schwartzbach, M., eds.: Proceedings of the 6th International
Conference TACAS 2000. Volume 1785 of LNCS., Springer-Verlag (2000) 331–346

10. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from
ASM specifications. In: Abstract State Machines 2003, Springer (2003) 263–277

11. Microsoft FSE Group: The Abstract State Machine Language. (2003) Last visited
June 2003, http://research.microsoft.com/fse/asml/.

12. Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Ma-
chines. In Hutter, D., Stephan, W., Traverso, P., Ullmann, M., eds.: Applied
Formal Methods — FM-Trends 98. Volume 1641 of LNCS., Springer-Verlag (1999)
311–325

13. Anlauff, M.: XASM – An Extensible, Component-Based Abstract State Machines
Language. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, ed.: Ab-
stract State Machines: Theory and Applications. Volume 1912 of LNCS., Springer-
Verlag (2000) 69–90

14. Schmid, J.: Executing ASM Specitications with AsmGofer. (2005) Last visited
Sep. 2005, www.tydo.de/AsmGofer/.

15. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company
(1997)

16. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic 1(1) (2000) 77–111

17. Reisig, W.: On Gurevich’s Theorem on Sequential Algorithms. Acta Informatica
39(5) (2003) 273–305

18. Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms.
ACM Transactions on Computation Logic 4(4) (2003) 578–651

19. Brger, E., Gotzhein, R.: The light control case study: A synopsis. Journal of
Universal Computer Science 6(7) (2000) 582–585

20. Börger, E.: The ASM Refinement Method. Formal Aspects of Computing (2003)
237–257

21. Fuchs, N.E.: Specifications are (preferably) executable. Software Engineering Jour-
nal 7(5) (1992) 323–334

22. Su, M.: Use abstract state machines to model a graphical user interface system.
Master’s thesis, Simon Fraser University, Burnaby, Canada (2006)

23. Glässer, U., Vajihollahi, M.: Engineering Concurrent and Reactive Systems with
Distributed Real-Time Abstract State Machines. In: DIPES 2004: IFIP Working
Conference on Distributed and Parallel Embedded Systems, Kluwer (2004)

24. Zave, P.: An operational approach to requirements specifications for embedded
systems. IEEE Transactions on Software Engineering 8(3) (1982) 250–269

25. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for construction
requirements specifications: The SCR toolset at the age of ten. Computer Systems
Science & Engineering 20(1) (2005) 19–35

26. Tran Van, H., van Lamsweerde, A., Massonet, P., Ponsard, C.: Goal-oriented
requirements animation. In: Proceedings of the 12th International Conference on
Requirements Engineering, Kyoto, Japan, IEEE CS Press (2004) 218–228

27. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: Fluent-based animation: Exploring
the relation between goals and scenarios for requirements validation. In: Proceed-
ings of the 12th International Conference on Requirements Engineering, Kyoto,
Japan, IEEE CS Press (2004) 208–217



28. Kappel, A.M.: Executable Specifications Based on Dynamic Algebras. In Voronkov,
A., ed.: Logic Programming and Automated Reasoning. Volume 698 of Lecture
Notes in Artificial Intelligence. Springer (1993) 229–240

29. Huggins, J.: An offline partial evaluator for evolving algebras. Technical Report
CSE-TR-229-95, University of Michigan (1995)

30. Diesen, D.: Specifying Algorithms Using Evolving Algebra. Implementation of
Functional Programming Languages. Dr. scient. degree thesis, Dept. of Informatics,
University of Oslo, Norway (1995)

31. Beckert, B., Posegga, J.: leanEA: A Lean Evolving Algebra Compiler. In Büning,
H.K., ed.: Proceedings of the Annual Conference of the European Association for
Computer Science Logic (CSL’95). Volume 1092 of LNCS., Springer (1996) 64–85

32. Del Castillo, G., Durdanović, I., Glässer, U.: An Evolving Algebra Abstract Ma-
chine. In Büning, H.K., ed.: Proceedings of the Annual Conference of the Euro-
pean Association for Computer Science Logic (CSL’95). Volume 1092 of LNCS.,
Springer (1996) 191–214

33. Eclipse Foundation: Eclipse.org home page (2006) Last visited Mar. 2006, http:
//www.eclipse.org.


