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Abstract

Annotations are a recent feature introduced in languages such as Java,
C#, and other languages of the .NET family, which allow programmers
to attach arbitrary, structured and typed metadata to their code. These
languages run on top of so-called virtual execution environments, e.g. the
JVM for Java, and the CLR for .NET languages, which allow for the run-
time generation of executable code. In this paper we explore how annota-
tions and the dynamic code generation capability can be used together to
provide programmers with high-level methods for dynamic generation and
modification of an application’s code — at run-time. The paper introduces
the @Java language, which is an extension to Java allowing annotation of
arbitrary statements, and the JDAsm library, which is an infrastructure
for bytecode manipulation which uses @Java annotations to pinpoint the
locations and code fragments that are being manipulated. Together, they
allow type-safe and fully symbolic runtime code modification and genera-
tion without any need to explicitly address bytecode instructions.

1 Introduction

The concept of metadata, which is data describing other data, is one of the
mainstay in computer science, and has been used in a large variety of contexts,
from defining database schema, to structuring digital annotations of medieval
manuscripts. In this paper, we are mostly interested in program metadata, i.e.
data describing programs. The concept of program metadata arises naturally in
those languages where programs are data, e.g. LISP [16]. In these languages, the
normal ways to describe relationships about different pieces of data can be used
equally well to annotate programs with metadata. However, program metadata
are common in more traditional languages as well, although mostly in a limited
way.

The various incarnation of the concept of program metadata can be charac-
terized by five features:

• content: what kind of information is carried by a metadata element

• author: who (person or tool) assigns a value to a metadata element

• lifetime: when a metadata element is attached to a program element,
and when (if ever) it is discarded

• location: where is the metadata stored (e.g., together with the code, or
in a separate location)
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Metadata Content Author Lifetime Location Target

comments free text programmer source source file any lexical
position as
permitted
by the
language
grammar

typing types &
signatures

compiler source source file variables,
functions,
objects

compilation
directive
(e.g.#pragma)

instructions
to the
compiler

programmer compile time source module

debugging
symbols

symbol
name,
address,
size,
attributes

compiler object object file module

identification
tags

config tags,
version
numbers

compiler object object file module or
executable

API docs
(e.g.
JavaDoc)

API specifi-
cations

programmer source,
deploy to
developers

source file
(as
comments)

functions,
methods

Interface
definitions

signatures programmer deploy to
developers

IDL file
(CORBA),
WSDL file
(web
services)

functions
(CORBA),
methods
(web
services)

Versioning
info (e.g.,
CVS)

release tags revision
control
system

configuration
release cycle

versioned
source file

any lexical
position

intellectual
rights man-
agement
(license info)

legal terms
of use

programmer,
lawyer

source (legal
validity
extends to
executable)

source file
(as
comments)

module
(typical),
code
fragment

development
cycle control

links to
design,
rationale,
tests,
approvals,
reviews, etc.

program
manager

source to
deploy

source file
(as
comments)
or external
management
database

module, unit

Table 1: Characterization of some historical forms of metadata.

• target: to which program elements can a metadata element be attached

Historically, program metadata has been used, in a ad hoc fashion, to convey
specific type of information across various tools, systems or activities in the
development cycle, or across long time spans to different persons working on
a system. For example, traditional forms of comments can be interpreted as
free-form metadata, attached to a specific lexical position in the source code
when the code is written by the programmer, and discarded upon compilation.
Table 1 lists some forms of metadata which are commonly used in programming
and system development practice.

The real weakness of these historical forms is the fact that each metadata
type is defined in a different way, is set and processed by specific tools, and in
most cases has no associated notion of validity of the content (e.g., there is no
way to guarantee that a comment specifying some legal terms will be consistent
with a predefined policy).

In recent times, the notion of program metadata has gained full citizenship
both in the design of languages (e.g., C# [8], Java [14]) and in the corresponding
execution environments (.NET CLR [9], JVM [15]). These new forms sport
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important differences w.r.t. the historical forms we discussed above:

• they are general purpose, i.e. the schema for their content can be defined
by the programmer, and the mechanism to set and retrieve the content is
not specific to a particular schema;

• they can be applied to generic program elements, with the programmer
being able to declare specific restrictions about which class of elements can
be designated as targets

• they have customizable lifetime and location, encompassing all the
range from source-only metadata (as comments) to run-time metadata (as
typing information with reflection).

Another interesting development linked to the mainstream adoption of vir-
tual execution environments is the comeback of modifiable code. With the
exception of quasi-quotation mechanisms [7] in certain interpreted languages
like LISP [16] or MetaML [17], the possibility of modifying the running code of
an application has been ruled out in language design and by operating systems
(usually with the assistance of hardware devices, e.g. by using an MMU to
forbid writing in memory pages containing executable code) since the seventies,
on the ground of security concerns.

However, the ability to synthesize, configure, customize or adapt the running
code of an application at run-time, possibly without even requiring a shutdown
of the application itself, is invaluable in many circumstances, as we will see in
Section 5.

While it is certainly true that allowing the uncontrolled modification of ex-
ecutable code is unacceptable in terms of security, very prone to introducing
bugs and potentially disastrous side effects, and can easily be abused or bring
an entire application to an abrupt termination, the type safety of .NET IL [9]
and of JVM bytecode [15] has allowed a safer approach to the issue. In fact, the
standard library in .NET explicitly include means to generate IL code on the
fly, and the class loading mechanism in the JVM provides similar (albeit less
programmer-friendly) features to the same effect.

Both these approaches require however that the programmer synthesizes
IL or bytecode fragments “by hand”, listing instruction after instruction the
contents of the fragment. In short, the programmer is required to be proficient
in both a high-level language (e.g., C# or Java) to write the main bulk of the
application in, and in IL or bytecode, in order to write high-level code which
will emit at runtime the sequence of instructions appropriate to accomplish the
task at hand. Given that programmers who can efficiently write assembly code
are increasingly difficult to find (as a consequence of the demise of machine-code
programming), this requirement is too stringent for most scenarios.

One solution which has been proposed (and implemented) has been to pro-
vide programmatic access to the compiler for the high-level language, so that
applications can generate the source code for a high-level class, then ask the
compiler to compile it, obtain a reference to the compiled class, and finally
load it and invoke some of its methods (see, among others, [4]). However, this
method suffers from a number of inconveniences, including a huge performance
hit (both in time and space, as the whole compiler for the high-level language
needs to be loaded and executed even for a small fragment), the difficulty of
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/* a. an Annotation type to record the link between

requirements and code */

public @interface Requirement {

String id();

String complianceStatement();

String certifiedBy() default "John Doe, program manager";

String date();

};

/* b. and its application to a method */

...

@Requirement(id="M1541", certifiedBy="Paul", date="12/5/2008")

public void applyStyle(TSpan span, Style s)

{

...

}

Figure 1: An example of Annotation declaration and use.

programmatically generating the source code, and the possibility of introducing
errors which would cause the compilation of the fragment to fail at run-time.

In this paper we will investigate a different approach, using program meta-
data to drive in a semi-declarative way the run-time synthesis of executable
code. We will refer to Java and the JVM throughout the paper, but the main
ideas can be applied to .NET languages as well, as in part already done in [3, 11].
Section 2 will briefly introduce Java 5 Annotations, and is followed in Section 3
by a presentation of the @Java language we defined to extend Java 5 Annota-
tions. Section 4 presents the code manipulation operations we have defined for
@Java, while Section 5 discusses a number of applications for dynamic bytecode
manipulation through annotations. Section 6 offers some conclusions and ideas
for future work, and completes the paper.

2 Java Annotations

2.1 The annotations model in Java 5

The Annotations1 introduced in Java 5 allow programmers to associate meta-
data to specific program elements. These metadata are characterized by an
identifier (akin to a class or interface name) and by a signature (or schema),
akin to the fields of a class, where each field has an identifier and a value. Custom
Annotation types are declared with a syntax similar to that of a class, through
the @interface keyword. Only field of basic types, String, Class, Enum, An-
notation, or arrays of the same are allowed, and default values for them can be
defined in the declaration of the Annotation type (see example in Figure 1-a.).
More precisely, Annotation support in Java includes:

1In the following we will use the term Annotation, with a capital A, to refer to the specific
form of annotations as used in Java.
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• a syntax to declare Annotation types (Figure 1-a.);

• a syntax to annotate program elements with instances of Annotation types
(Figure 1-b.);

• an API and library to inspect through reflection the annotations associated
to program elements;

• a format specification, stating how annotations are stored in .class files;

• a tool (called apt, annotation processor tool) for generic processing of
annotations in source code at pre-compile time;

• an API and associate library for generic programmatic processing of an-
notations through the apt facilities.

Since Annotation declarations are themselves program elements, Annota-
tions can be annotated as well. Two of these meta-annotations (i.e., program
meta-meta-data, data describing how data about the program should be inter-
preted) are of particular relevance for our purposes. The first is the retention
policy of an annotation type, allowing the programmer to define its life time:
source only (and discarded upon compilation), source and .class (and discarded
upon class loading), or runtime (preserved in the running system). The second
is the target of an annotation type, allowing the programmer to define to which
program elements it can be attached: other annotations, constructors, fields,
local variables, methods, packages, formal parameters, types.

It can be easily seen how with the ability to define the name, schema, life-
time, location and target of each custom annotation, all the features of our
characterization of annotations from Section 1 have been placed under control
of the programmer.

2.2 Limitations of the Java 5 annotation model

While the annotation model presented in the previous section is sufficiently com-
prehensive for the vast majority of applications, it suffers one major drawback
for the purpose of dynamic code manipulation: a too coarse granularity level.
In fact, while the target granularity for data is a single field, parameter, or
local variables, the target granularity for code is a single method. This choice
is reasonable in consideration of the fact that methods are the smallest code
elements which can be found in class signatures2, but any code manipulation
system that can only manipulate entire methods could be expressed more easily
by using typed “function pointers” (e.g., the delegate model in C#), and would
not be suitable for fine grained optimization or configuration. We will discuss
why fine grained manipulation is useful in Section 5.

Another minor limitation is that, unlike C#, only a single instance of a given
annotation type can be applied to a given target, even when the Annotation
fields would be different. For example, with reference to Figure 1, we cannot
place multiple Requirement annotations on a method, to signify that it satisfies
several requirements at once. This limitation (for which we could not find
a documented design rationale, and that apparently could be easily lifted by

2But notice that the same principle has not been applied to data, in that local variables
are not visible in class signatures, while all other possible targets are.
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int i;

double t=0;

for (i=0; i<a.length; i++)

t+=a[i];

@Parallel for (i=0; i<a.length; i++)

a[i] /= t;

Figure 2: An example of statement annotation in @Java.

extending a few Reflection API methods) can be overcome by using array-typed
fields, at the cost of some complication in the code. In our example, we could
have used a String array for the id, certifiedBy, complianceStatement and
date fields. This, however, is a solution which is somewhat contrived, more
error-prone and less general than one could desire.

It should be noted that both these limitations have been identified in other
contexts as well. For example, there is ongoing work on allowing annotations
on each usage of a type which are being discussed for adoption in Java 7 [10]
(the same document cites allowing multiple instances of an annotation on the
same target as an example of possible developments).

3 The @Java language

Following the example set in [3], we propose to extend the Java language in
order to allow Annotations to be placed on code fragments inside a method, or
more precisely, on any statement.

The resulting language, called @Java, can be reduced to Java 5 by a prepro-
cessor, which serves as compiler for the language.

3.1 Syntax extension

@Java differs from Java by a single syntax rule, namely

Statement ::= Annotations Statement

which allows annotations to be placed in front of any statement. We refer here to
the Java 5 grammar as presented in [14]§18.1; a more concrete definition which
exploits lookahead to optimize parsing time in the implementation is provided
in [12]. A typical example of a fragment of @Java code is presented in Figure 2,
where a statement annotation @Parallel is used to indicate that all iterations
of a for loop could be executed in parallel.

3.2 Compilation strategy

The compilation of @Java to Java must satisfy two fundamental requirements:

1. the result of the compilation must be a valid Java 5 program;

2. it must be possible to retrieve which statements were annotated with which
Annotations from the .class data produced by the Java compiler;
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The first requirement can be satisfied by simply removing the statement an-
notations, which is easily performed by visiting the syntax tree of the @Java
program while skipping the annotations nodes corresponding to the grammar
rule above. The second requirement is more tricky, given that we want to use a
standard Java compiler for the back-end compilation.

The strategy we implemented is as follows:

1. an annotated statement of the form A(~v) S or A S, where A is an An-
notation and S is a statement, is replaced with a block of the form
{ Kb(k) S Ke(k) } where Kb(k) and Ke(k) are special statements which
serve as markers (these will be discussed in the following), and k is a
unique identifier for the statement annotation instance.

2. an Annotation is generated for the method containing the annotated state-
ment, with two fields: an array of identifiers ids and, in parallel, an array
of Annotations anns. The contents of these arrays are initialized so that,
for each index i, id[i] = k and anns[i] = A(~v) (or A if the form of anno-
tation without arguments was used).

Thus, statement annotations are lifted to the method (a legal target according
to Java), stored in an array of Annotations (to overcome the problem with
multiple instances of the same Annotation type on a single target), and linked
by its index i to the unique identifier k in the parallel array of identifiers, which
is also part of the method annotation. k in its turn is used to link to the marker
statements Kb(k) and Ke(k). These statements must be such that (i) their
presence does not alter the semantics of the program, (ii) they can be localized
in compiled bytecode, together with their unique key k, (iii) they cannot be
optimized away or otherwise corrupted by any Java compiler.

All these properties can be obtained by using as markers method calls to
non-final, static methods of a special dummy class, with empty bodies, and
having k as their single argument. In particular, since their bodies are empty
calling these methods does not alter the semantics, per (i). The method call
sequence consisting of a iconst n, bipush, sipush, ldc or ldc w instruction to
push k on the stack, followed by a invokestatic instruction to a distinguished
method is easily identifiable in the code, satisfying (ii). And finally, since the
dummy class could be changed after compilation of the invocation, the compiler
cannot optimize away the call by inlining the body, which guarantees (iii).

A few observations are in order. First, it should be noted that the bytecode
sequence is easily identifiable, but not unique. A similar snippet, consisting
of a push followed by a method call, could also be generated in the course of
evaluating an expression like k + o.M(), where it would be followed by an add
instruction. However, since we define only a version of the method M with
a single argument k, cases like the above would be flagged as errors by the
compiler, so the risk if erroneously identifying the bytecode fragments for the
Kb(k) and Ke(k) sequences is minimal, and in practice confined to hand-crafted
bytecode.

Second, the method calls Ke(k) and Kb(k) do not alter the functional se-
mantics of the program, but they could alter its performance, and possibly
adversely impact the meeting of non-functional requirements, since method in-
vocation add a small performance penalty. However, while the Java compiler
cannot inline or optimize away the method calls, an adaptive optimizing JIT
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public void M()

{
...

@A while (...) {
cnt++;

@B(c=1) for (T i: coll) {
...

}
}

}

import jcodebrick.Fragment;

import jcodebrick.MultiA;

...

@MultiA(

ids={1,2},
value={@A,@B(c=1)}

)

public void M()

{
...

Fragment.begin(1);

while (...) {
cnt++;

Fragment.begin(2);

for (T i: coll) {
...

}
Fragment.end(2);

}
Fragment.end(1);

}

Figure 3: An example of the source-to-source translation performed by the
@Java compiler. On the left, the source @Java code; on the right, the result of
the translation.

compiler can, and usually will, so in practice even non-functional semantics is
preserved.

Third, since method calls in Java can have side effects, and the compiler
cannot be sure which body will be executed for non-final methods (as already
discussed above), it is extremely unlikely that even an aggressively optimizing
compiler will move code across Kb(k) and Ke(k) borders3, so we can rely on the
fact that the compiled bytecode contained between Kb(k) and Ke(k) markers is
indeed the complete and only code for the annotated statement S.

Figure 3 shows an example of how an @Java code fragment is translated to
Java by the @Java precompiler. As a side note, observe how the compilation
scheme can be applied to the empty statement ; (e.g., @Pos;), hence @Java
annotations can be used to assign symbolic names to specific positions in the
source code. On the other hand, statement annotations cannot be applied to
return, throw, break and continue statements, because in that case, the Ke(k)
end markers would be flagged as unreachable code by the Java compiler.

3With the potential exception of deferred stack pops, which however would not affect the
semantics, as the operand stack is supposed to be stable on statement boundaries, and of the
evaluation of side-effect free expressions which only read local variables and assign to local
variables, which could be moved around by the compiler: see [13] for a discussion of such
cases.
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4 Manipulating annotated code

As we have seen in the previous section, the statement annotations introduced
by @Java can be used in three capacities:

• to express metadata about program fragment, serving all the needs we
introduced in Section 1 (but with a finer granularity, so that metadata
can be more precisely attached to code w.r.t. the standard model of Java
5);

• to assign symbolic names to specific positions in the source code, with
a single-statement granularity; such symbolic references will be available
also at runtime, in executable code.

• to assign symbolic names to code fragments, both in source and corre-
sponding bytecode, and again available at runtime.

We will not discuss in this paper applications of the first role that statement
annotations can serve, focusing instead of using the other two roles for dynamic
bytecode manipulation.

In fact, given the availability at runtime of a system of symbolic names for
places and fragments, established in the source code (or even programmatically,
in more contrived cases), and coupling that with the dynamic class loading
system provided by the JVM, it becomes possible to insert, delete or move
around parts of the program, and immediately execute the resulting code.

4.1 The JDAsm library

The code manipulation operations are offered to the programmer through the
API provided by a library called JDAsm [12]. Similar in spirit to other code
manipulation libraries like BCEL [1] or JavaAssist [5, 4], JDAsm was developed
with the goal of offering ease of use through the use of statement annotations,
insulation from the actual bytecode, and good performances, to allow extensive
use at run-time.

We use a lazy evaluation strategy; code manipulation operations requested
by the program are queued and not evaluated, until a build operation is invoked;
at that point, the queued operations are applied in order, and a new class
is generated in-memory hosting the resulting code. In addition to increasing
performance, since no intermediate code or classes have to be generated in
the course of the manipulation, this lazy strategy offers an opportunity for
optimizing the operation queue (e.g., all operations modifying a fragment which
is later deleted can be skipped altogether) before the actual build4.

In the rest of this section, we will describe the operations offered by the
library, together with the formal definition of some of them (other operations
are defined in a similar way, see [13] for a fuller account), and an example of
application.

4The current implementation does not apply any optimization; these issues are scheduled
for future work.
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4.2 Notation and definitions

Every method of a Java class stores the local variables into the local variable
array. We use L ⊂ N to indicate it, treating a variable just as the index of
its position in L; since the variables are stored in L in growing order starting
from index 0, it will be L = [0, . . . , n). We next introduce the domains of the
variables V and of the instructions I, and define the following functions to obtain
the variables an instruction can read, and those it can write:

rv : I→ P(L)

wv : I→ P(L)

Let MC be the set of all the methods of a Java class C, and let i ∈ I be
the instance of an instruction, we use IL = 〈i1, . . . , in〉 ∈ IL to indicate an
instruction list (either the body of a method or just a part of it). Then we
define the following:

µ : MC → IL

as the function that given a method m ∈ MC returns all its bytecode as a list
of instructions; with a slight abuse of notation we will write IL ⊆ m to indicate
that IL is a contiguous sublist of µ(m). We use the function ι to retrieve the
index of an instruction i in an instruction list:

ι : IL× I→ N

to simplify the notation, we will overload ι as follows:

ι : MC × I→ N

ι(m, i) = ι(µ(m), i)

The set of local variables referred to by an instruction or an instruction list
(again, overloading the notation for simplicity) is defined as

loc(i) = rv(i) ∪ wv(i)

loc(IL) =
⋃
i∈IL

loc(i)

Let α be a statement annotation inserted in the source code to mark a
statement (typically a block statement) inside a method m ∈ MC . Then we
define a Fragment f as the section of bytecode of m identified by the triple r =
〈id, α,m〉, where the id is the unique identifier generated by the pre-compilation
parser. A fragment is the smallest part of code that the user can manipulate by
moving it and deleting it. It is defined as:

f = 〈ib, ie, r〉 where ib ∈ r.m, ie ∈ r.m, b < e

Each fragment f is delimited by two markers called starting marker Kf
b

(immediately preceding ib) and ending marker Kf
e (immediately following ie).

Each marker is a two-instruction sequence, Kf
b1

and Kf
b2

, Kf
e1 and Kf

e2 , which are
the result of compiling the marker method calls inserted by the @Java compiler
in place of a statement annotation. They include:
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• An instruction Kf
b1

= Kf
e1 to push onto the stack the value of f.r.id

• A static call to an empty method, one for any Kf
b2

and another one for
any Kf

e2

Between the markers, f includes l >= 0 inner instructions, and we use this
function to get them:

ν(f) = IL

Thus, given a method m ∈MC of n instructions, and a fragment f of length
l in m, we will have

µ(m) = 〈i1, . . . ,Kf
b1
,Kf

b2
, ij , . . . , ij+l−1,K

f
e1 ,K

f
e2 , . . . , in〉

A fragment is valid if it does not contain any jump instruction targeting an
instruction outside of the fragment, with the exception that a jump immediately
after the end of the fragment (i.e., to the first instruction following the last
instruction in f) is considered valid. This condition excludes as valid fragments
any part of code which contains a break or continue instruction which would
continue the execution to locations not included in the fragment, and, depending
on the compilation scheme used by the Java compiler, certain statements with
return or throw clauses embedded in an outer try-catch-finally statement
(in all these cases, the compiled code would include a jump to the code for
the finally clause). In the following, we concern ourselves only with valid
fragments.

It should be noted that multiple fragments in m never overlay each other
and are always correctly nested, i.e. they are either disjoint, or one is entirely
contained in the other. This is guaranteed by the grammar of @Java under the
assumption that the compiler preserves the nesting structure of blocks in the
compiled code (an assumption which holds true for all current major compilers).
For instance, given two fragments f ′ and f ′′ (appearing in this order) in the same
method m, their markers K ′s, K

′
e, K

′′
s ,K ′′e , and the index in the IL ⊆ m of such

markers, a = ι(m,K ′s), b = ι(m,K ′e), c = ι(m,K ′′s ), d = ι(m,K ′′e ), then either
a < b < c < d or a < c < d < b.

4.3 Operations

We define four operations over fragments:

• opsrc, to search and retrieve fragments;

• opins, to insert a fragment at the start or end of another fragment;

• opdel, to delete a fragment from the code in which it appears;

• opxtr, to extrude a fragment, and execute it outside its context.

In the following, we provide a full formal definition only for opins, while for
other operations we provide only a partial definition to support the intuition,
omitting some details due to space considerations.
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4.3.1 Search

Through the search operations the user is able to retrieve and get a refer-
ence to the fragments declared in a Class C. The operation is offered in sev-
eral overloaded forms, allowing searches according to different criteria. Re-
membering that r = 〈id, α,m〉, then we have this four overloaded operations
(all forms take a class or a single method as argument, and then more argu-
ments to specify which annotated fragments in the class should be retrieved):
opsrc : C× N→ F given a class and an id, returns the frag-

ment with that id in the class;

opsrc : MC → 〈F1, . . . , Fn〉 given a method, returns the list of frag-
ments defined in that method;

opsrc : C× A→ 〈F1, . . . , Fn〉 given a class and an annotation type,
returns the list of fragments annotated
with that type in the class;

opsrc : MC × A→ 〈F1, . . . , Fn〉 given a method and an annotation type,
returns the list of fragments annotated
with that type in the method.

For brevity we omit here a formal definition of these operations, which are
clerical in nature; the interested reader can refer to [13] for the details.

4.3.2 Insertion

Through the insertion operation the user can inject the bytecode of a source
fragment fs into a specific position in a method m of a class C. The destination
position is related to a destination fragment fd, and it can be one of before start,
after start, before end, after end, which indicate, respectively, that fs is to be
inserted before the starting marker of fd, after the starting marker of fd, before
the ending marker of fd, and after the ending marker of fd. The possibility
of inserting code inside and outside the destination markers has consequences
in concatenated operations that involve the destination fragment fd more than
once. For instance, given four fragments A, B, T , Z, by inserting A into T
in position before start, then inserting B into T in position after start, and
finally inserting T into Z, the code of B will be carried into Z through T , but
not the code of A, which has been inserted outside the markers of T .

Given a fragment f , let IL = ν(f) be its instruction list. IL can use and
modify local variables, so we need to consider the source method ms = fs.r.m,
the destination method md = fd.r.m and their respective local variables. Any
variable has its own scope; the following function:

scope(IL, v) = (j, k) | v ∈ V j, k ∈ N

is defined to return the pair j and k as the boundary index of the instruc-
tions in IL where the scope of v is valid (this information is provided by
the Java compiler among the metadata carried with Java classes, in the table
LocalVariableTableAttribute).

Given an instructions list IL, a free variable v′ ∈ loc(IL) is a variable whose
scope is defined outside IL:

v′ ∈ loc(ν(fs)) | (j, k) = scope(µ(ms), v′), j < ι(m, kfs1) ∧ k > ι(m, kfs2)
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When we want to deal with insertion of a source fragment fs that uses the
free variable v′, we need the user to specify a valid mapping among all the free
variables in fs with the variables in md whose scope covers the insertion point.
We use a function to get the subset of loc(IL) of all the free variables in IL:

floc(IL) = {v ∈ loc(IL) | v is free}

Let Vm = {vs1 → vd1 , . . . , vsn
→ vdn

} be a user defined mapping that
associates to any free variable vsi

of fs a valid variable vdi
of fd (valid variables

are those that are in-scope at the insertion point and have the appropriate type;
the mapping is specified by name in the implementation for ease of use, but
here we will only refer to the variable indexes), then we define the operation of
insertion as the function that given a source fragment fs, a destination fragment
fd, a position p and a mapping Vm, inserts the new fragment in the same method
md of fd, and returns m′d to indicate that the instruction list IL of md has been
modified.

opins : F× F× P × Vm →MC

Other aspects have to be considered in addition to free variable mapping in
implementing this operation. In particular, there are cases where the insertion
cannot be performed in a type-safe way. If the source bytecode contains a
return instruction, we have to check that the return type is compatible with
the return type of the destination method. To model this, we introduce the
following functions:

ret : I→ Type

ret : MC → Type

(where Type is one of the basic types of the JVM) defined as:

ret(i) =
{
t if i is the RETURN instruction for type t
∅ otherwise

ret(m) =
⋃

i∈µ(m)

ret(i)

with |ret(m)| ≤ 1, that is, since we are working on an already loaded class,
guaranteed by the bytecode verifier.

If ∃i ∈ ν(fs) such that ret(i) 6= ∅∧ret(i) 6= ret(md) (i.e., a return instruction
whose type differs from that of the method it is being injected into), then
the fragment is not compatible with the method and the insert operation fails
returning an error. As we have already seen, free variables are renumbered
through the user-supplied mapping Vm; all other variables need to have their
index shifted so that they do not conflict with the local variables of fd. Since
all variables in md use their own index into the local variable array L and the
variables V ∈ loc(ν(fs)) with V /∈ floc(ν(fs)) might use the same indexes, to
avoid the risk of overlaying the two sets, we compute the higher index h used
by md and add h to any index used in V .

Furthermore we consider the possibility that IL = ν(fd) is included inside
a try-catch block. Since we cannot determine by looking at IL alone if its
instructions can raise an exception, we conservatively assume that they can,
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goto end

catch: new jcodebrick/FragmentRTE

dup_x1

swap

invokespecial jcodebrick/FragmentRTE."<init>":(Ljava/lang/Throwable;)V

athrow

end:

Figure 4: The IL code for the catch blocks appended at the end of fragments
for the insertion operation.

and surround the inserted code with a brand new try-catch block that will catch
any exception, and handle it by throwing a new RuntimeException (having the
original exception in its cause field) in the catch block.

It should be noted that our choice is not the only possible one. Another
possibility would be to update the signature of md to accommodate for the
additional exceptions which could be raised by the inserted fragment. This
choice however would violate the API contract between the method and its
callers, and make seamless replacement of code difficult, while our approach,
based on the unchecked RuntimeException, does not suffer from this difficulty.

We define an exception as the tuple exc = 〈ExcType, j, k, h〉 with its type,
the indexes j and k as delimiters of the scope of the try block and the index h
of the first instruction of the catch block. This information is held in the Java
class file into the exception table field of the Code attribute for the method.
We will indicate with et(m) the exception table of a method m, according to
its Code attribute, containing metadata about the type and indexes of all
try/catch blocks, and with te(m) the set of ExcTypes thrown by a method m,
according to its signature.

The set of exception types which might be thrown by a fragment f =
〈ib, ie, 〈id, α,m〉〉 is defined as follows:

tc(f) = te(m) ∪ {ET | 〈ET, j, k, h〉 ∈ et(m) ∧ j ≤ b ∧ e ≤ k}

The code that will be inserted at the end of fs in case we have to add the
catch block will be that shown in Figure 4; we will denote that instruction list
with ILRT .

With the above definitions, we say that an insertion operation opins(fs, fd, p, Vm)
is valid if the following conditions are met:

1. floc(fs) = domain(Vm);

2. ∀v ∈ range(Vm), scope(ν(fd), v) = (j, k) =⇒ j ≤ ip(fd, p) ≤ k;

3. ∀(v → w) ∈ Vm, type(v) = type(w);

4. ∀i ∈ ν(fs), ret(i) = ∅ ∨ ret(i) = ret(fd.m).

where domain(m) and range(m) are, respectively, the set of keys and of values
in a mapping m; ip(f, p) returns the index of the insertion point for a fragment f
with a position p (it will be the index of the begin or end marker of f , depending
on p), and type(v) is the VM type of a variable v.
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An invalid insertion operation results in an InvalidBuildException being
thrown at build time, and the operation is aborted. If the operation is valid,
the insertion proceeds as follows.

First, the local variables in the IL associated with the source fragments are
renumbered, to avoid clashes with the variable already used in the destination
fragment. Then, free variables are mapped according to Vm, and finally a try-
catch block is added, if needed, to capture and turn into RuntimeException all
exception thrown by the source fragment which are not handled in the destina-
tion method. Formally, this process is described in the following.

Let h = maxv∈loc(µ(fd.m))(v) be the index of the highest-numbered local vari-
able in the destination method. Then a new instruction list IL′ = 〈i′1, . . . , i′n〉 ·θ
is obtained by copying and modifying the instruction list of the source fragment
IL = 〈i1, . . . , in〉 in such a way that

i′j =


ij

[
v + h

/
v

]
if v ∈ loc(ij) and v is not free

ij

[
w
/
v

]
if v ∈ loc(ij) and (v → w) ∈ Vm

ij otherwise

and

θ =
{
ILRT if tc(fs) \ tc(fd) 6= ∅
〈〉 otherwise

The resulting method m′d will be such that its instruction list will be updated
to insert IL′ at the location specified by p and fd; its exception table is updated
to include the possible addition of try-catch blocks for the inserted fragment;
and its LocalVariableTableAttribute is updated to include the new local
variables carried into the method by the inserted fragment. In all other respects
(e.g., signature, throws clause, debug attributes, etc.) m′d is identical to md.

We only define fully the case for p = before start (the other cases are totally
analogous), where if

µ(md) = α · 〈Kfd

b1
,Kfd

b2
〉 · β · 〈Kfd

e1 ,K
fd
e2 〉 · γ

then the result of the insertion is m′d such that

µ(m′d) = α · 〈K ′fs

b1 ,K
fs

b2
〉 · IL′ · 〈K ′fs

e1 ,K
fs
e2 〉 · 〈K

fd

b1
,Kfd

b2
〉 · β · 〈Kfd

e1 ,K
fd
e2 〉 · γ

and
et(m′d) = et(md) ∪ E

where K ′fs

b1
,K ′

fs

e1 are similar to Kfs

b1
,Kfs

e1 , respectively, except in that they have
a fresh unique id (a larger id may require a different opcode), and

E = { (ET, j, k, k) | ET ∈ tc(fs) \ tc(fd),
j is the initial index of IL′ in µ(m′d),
k is the index of the catch label from θ in µ(m′d) }

As a final technicality, the max stack, max locals, code length, code,
exception table length, exception table, attribute info of the Code at-
tribute for m′d are updated as needed, and a copy of the Annotation for fs
with the new fresh id used in K ′fs

b1
and K ′fs

e1 is added to the annotations for m′d.
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4.3.3 Deletion

To delete a fragment f from a method m means to re-emit the bytecode of
m without the instructions delimited by Kf

b and Kf
e . We define three types

of deletion: delete without markers, delete with markers, delete only markers
where respectively the bytecode included by f is deleted but the markers are
not, the bytecode is deleted and the markers are too, and only the markers are
deleted while the bytecode included in f is left untouched.

The operation of deletion is defined as the function that, given a method m,
a fragment f in m, and a type t of deletion, returns m′ which is identical to m
except that part or all of µ(m) is not present in it anymore:

opdel : MC × F× T →MC′

Since the @Java compiler inserts fragment markers only at the begin and at
the end of a statement, we are guaranteed that a deletion cannot overlap a try-
catch block nor the scope for a variable, and that the corresponding fragment
cannot contain an instruction which is a target from an external jump instruc-
tion. Furthermore, since the Java compiler always adds an explicit return
instruction at the end of a void method, we are assured that the return type
from a method’s code cannot be changed by a deletion. Hence, a deletion does
not need any structural change to a method.

We only define fully the case for t = delete without markers (the other cases
are totally analogous), where if

µ(m) = α · 〈Kf
b1
,Kf

b2
〉 · β · 〈Kf

e1 ,K
f
e2〉 · γ

then the result of the deletion of f is m′d such that

µ(m′) = α · 〈Kf
b1
,Kf

b2
,Kf

e1 ,K
f
e2〉 · γ

We also need to remove from the exception table all the try-catch blocks which
were entirely contained in the removed fragment f , and possibly compact the
local variable table by removing all variables whose scope was entirely within
f . Again, addresses in µ(m′) are renumbered, and the various Code attribu-
te fields are recomputed as needed. These operations are similar to those we
already described for opins, and for brevity we do not provide all the details
here (the interested reader can refer to [13] instead).

4.3.4 Extrusion

The extrusion operation makes it possible to execute the code of a fragment as a
self-sufficient method, outside of its original context. The result of the operation
is a new class, containing a single static method exec (and the default empty
constructor), whose body is the IL of f .

opxtr : F→ C
The signature of the exec method is synthesized by looking at the return

type of instructions in f (which determine the return type of the method), at the
set of free local variables (which determine the arguments number and types),
at whether f.m was static or an instance method (to determine whether to
add an additional this parameter), and finally at the exception table for f.m
(to determine the throws clause for exec). In particular:
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• The return type for the method is given by ret(f.m), subject of course to
the condition that |ret(f.m)| ≤ 1 (which, however, is already guaranteed
by the bytecode verifier). Since the bytecode verifier also guarantees the
absence of unreachable code in the source method, it is always the case
that the last instruction of a fragment is not a Treturn (remember that
we have added two instructions at the end of such fragment, Ke). To
further guarantee that any branch in exec terminates with a Treturn
instruction, in synthesizing the method we append such an instruction at
the end of Kf

b (k) ·ν(f) ·Kf
e (k), with a fresh k, and optionally preceded by

an instruction to push the default value for the return type (see [15]§2.5.1).

• All free variables in floc(ν(f)) are lifted to method arguments, with the
appropriate5 types. As part of this lifting of free variables to arguments,
all references to variable indexes in ν(f) are renumbered accordingly (so
that the n = |floc(ν(f))| free variables lifted to argument occupy indexes
0 . . . n − 1 and local variables whose scope is entirely contained within f
occupy indexes ≥ n.

• The set of exception thrown by exec is determined as

te(exec) = tc(f)

which indicates that any exception which is declared to be thrown by the
source method, or caught by a try-catch surrounding f , is added to the
throws clause of exec.

It should be noted that changes to local variables of extruded fragments are lost
upon return from the synthesized method. This is a limitation of our approach,
which derives from the lack of out variables in Java.

4.4 Examples

Let us consider an application which has to perform frequently some check
on given conditions. These checks can be very thorough and complex, and
computationally expensive, but in most cases a more basic and more efficient
approximation might be sufficient, depending on environmental conditions. As
will be described in Section 5, we envision a situation where the checks have to
be performed in real-time, so we do not want to pay the penalty for an indirect
method call each time, and decide to use runtime code manipulation instead.

The method performing the checks could be as follows:
5Notice that types inferred this way may differ from those in the source code; for example,

short local variables will be promoted to int when lifted as arguments, according to the
standard type conversion rules of the JVM [15]§3.11.1.
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@Java Source @Java compiled code

class C1 {
...

public void m()

{
...

@ComplexChecks {
/* complex check code */

}
...

}
...

}

import jcodebrick.Fragment;

import jcodebrick.MultiA;

class C1 {
...

@MultiA(

ids={1},
value={@ComplexChecks} )

public void m()

{
...

{
Fragment.begin(1);

/* complex checks code */

Fragment.end(1);

}
...

}
...

}

The compiled @Java code will be in turn compiled by the Java compiler into the
following bytecode:

@MultiA{ids={1}, value={@ComplexChecks}}
method m():

Code:

// Initial method code

...

// Starting marker Kb

iconst 1

invokestatic jcodebrick/Fragment.begin

...

// complex checks code

...

// Ending marker Ke

iconst 1

invokestatic jcodebrick/Fragment.end

...

// More method code

...

// End of method

return

The code to replace at runtime the complex checks fragment with the basic
checks one, and invoke the modified method, could be as follows:
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CbClass c = new CbClass( C1.class );

Fragment complex = c.getFragment("ComplexChecks");

Fragment basic = c.getFragment("BasicChecks");

...

complex.insertFragment(Fragment.BEFORE START, basic);

complex.delete();

C1 cc=(C1)c.build().newInstance();

cc.m();

The bytecode of the modified method m is obtained through these two steps:

After the insertion After the deletion

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
iconst 1
invokestatic jcodebrick/Fragment.begin
...
// Complex Fragment code
...
iconst 1
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

4.5 Performance

Given that one of the major advantages of our proposal over previous research
is its ability to perform code manipulation at runtime, we are particularly con-
cerned about its performances.

We have compared the execution times of typical @Java operations using dif-
ferent libraries for bytecode engineering. In particularly, JDAsm performances
have been compared to that of BCEL [1] and JavaAssist [5, 6], using the latter
both at source level and at bytecode level. In particular, we have measured the
performances of the three libraries in the synthesis of a new Java class (as in
our build operation), containing a single “Hello world” method.

The experimental results, obtained by averaging 20 runs of the equivalent
generating code for the three libraries are shown in Figure 5. As can be seen,
JDAsm is substantially faster than both BCEL and JavaAssist in source mode,
and offers performances comparable (and slightly better) with those of JavaAs-
sist used in bytecode mode, but with the advantage of being able to compose
the method symbolically, rather than having to handle each individual bytecode
instruction.
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Library Time
BCEL 172ms
JavaAssist (source level) 188ms
JavaAssist (bytecode level) 78ms
JDAsm 62ms

Figure 5: Execution times for the class synthesis benchmark.

5 Applications

The ability to modify the running code of an application in a structured, sym-
bolic and type-safe way, while leaving the programmer able to express code frag-
ments in source form, opens the way to a vast number of novel applications. In
the following we will only list a few examples, serving as conceptual scenarios but
with no aim of completeness. Before going into the details, it is worth remarking
that similar techniques have been used already in the past, albeit typically in
an ad hoc fashion, and often at the source level (e.g., classical aspect-oriented
programming), or at program installation time (e.g., configuration-selecting in-
stallers, as in a OS installer that only installs drivers needed for the actual
hardware). In contrast, our proposed technique is totally general, annotation
can be used both at the source level and at the bytecode level, and operations
can be performed at any stage of the life cycle of the application, even while the
application is running and without requiring a restart.

5.1 Logging

At installation time, a program could contain statements whose purpose is to
compute and log to some external file certain values describing the state of the
application during its execution, as a way of monitoring its performances and
correctness. After monitoring the system’s logs for a while, it can be determined
that the system is behaving correctly, and that there is no longer a need for a
detailed log.

Current logging frameworks (e.g., Log4J [2]) can enable or disable the output
to the log file dynamically, but cannot avoid computing the values, which might
be costly or have other undesired side effects. In contrast, with @Java the logging
statements (or blocks) can be marked with an annotation such as @Log(level),
and when it is determined that logging is no longer required, all the logging
blocks below a given severity level can be removed from the running code,
thus avoiding any associated computation and possibly improving performances
significantly.

As a related example, the @Log fragments could be removed leaving the
markers in place, and stored in a data structure, together with a reference to
their original location. This way, it becomes also possible to reinstate them if
at a later time logging is desired again.

5.2 Environment-based reconfiguration

It is often the case that a system has to react differently to certain events based
on changing environment conditions. For example, a heavy-load dispatcher for
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a web server farm could operate normally under standard operating conditions,
while monitoring the response times of the system. If these become too high,
it could install in its running code a fragment to monitor incoming requests
especially to identify denial-of-service attacks (this might entail maintaining and
updating complex data structures, to perform pattern matching on the requests
data and to identify sets of IP addresses from which a potential distributed-DoS
attack is coming). If no DoS attack is recognized, the dispatcher would go back
to the standard dispatch code. On the other hand, if such an attack is identified,
the dispatcher could further substitute its request-dispatching code with a more
precise, but less efficient, version which would guard against requests coming
from potential DoS sources. The assumption here is that the more precise
dispatching code, rejecting DoS requests upfront, will save processing costs later
on in the requests handling chain. If, after some time, it is determined that the
DoS attack has ended, the original, optimistic but faster code can be replaced
again inside the dispatcher.

In a more flexible implementation, both attack-detecting code and hardened
dispatching code could be loaded dynamically based on the type of attack, thus
making the system able to detect and respond optimally to different threats.

Similar behavior could be obtained by calling virtual, abstract or interface
methods to perform the monitoring, detection and dispatching functions, and
switching to different implementations of the same when appropriate. How-
ever, this standard technique would leave several method invocations in place
even when they are not needed, which might be undesirable for a very high-
performance system. On the contrary, with @Java the mutable code is substi-
tuted in-place, with no need for indirection, thus guaranteeing better perfor-
mances both in the optimistic case and in the hardened one.

5.3 Dynamic optimization

A numeric application could include some heavy computation, which could be
performed either in floating point (e.g., using doubles) or in fixed point (e.g.,
using ints and then scaling the results by a fixed amount). At install time, the
application could measure the performances of both, and then insert into its
own computation code the version which offers better performances.

Again, similar results could be obtained by guarding the computation with
an if statement, or by calling a method, but if the variable fragment has to
be executed a relevant number of times (which is not uncommon, e.g. with
large matrix operations), the cumulative cost of evaluating the flags or calling
the methods, multiplied by millions or billions of invocations, could become
significant. In contrast, with @Java the insertion of the proper fragment in-line
would be performed only once, regardless of the number of times the fragment
is run.

It is also worth remarking that the choice between different versions of a code
fragment could be done dynamically, possibly switching between multiple ver-
sions based on external conditions. For example, using a floating point version
can be too costly if another numerical application is running concurrently (e.g.,
due to the need of storing and retrieving all the FPU registers at every context
switch), but may be more convenient otherwise, so the application could peri-
odically re-check the performances of the various versions of the code available,
and choose a different one to execute based on current performances (again,
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saving on indirection costs as the chosen fragment would be inserted in-line).

5.4 Adaptable declarative security

The native security model in Java is operational, meaning that code performing
a protected function has to call specific methods to check whether the caller has
the right permission to invoke the given function. This might be inconvenient
and error-prone, and moreover the entire security model of an application is
wired-in once the application is written and compiled6.

With @Java, a programmer can mark relevant sections of code with an-
notations such as @GrantPermission(perm), @AcquirePermission(perm) and
@RequirePermission(perm), thus moving to a declarative model instead. One
of the advantages is that in @Java permission-related annotations can be placed
on statements and blocks, thus providing finer control over which sections of
the code are critical (and satisfying Denning’s principles). Another advantage
is that the operational code needed to actually grant, acquire and check permis-
sions can be injected at the appropriate places automatically, and – moreover –
it can be changed, at runtime, to suit different security models as appropriate
from time to time.

5.5 Parallelization

In parallel applications, it is customary to use dialects of common programming
languages extended with keywords used to declare properties relevant for the
parallel execution of the code. This approach typically requires custom compil-
ers, which produce parallelism-handling code based on the custom keywords.

As we have seen in Figure 2, we could use a @Parallel annotation placed
on a for statement to declare that the iterations of the for are independent
and could potentially be executed in parallel. Then, an application could inject
in those places code to actually realize the parallelism, choosing whatever im-
plementation is more appropriate for the JVM/OS/hardware combination the
program is running on (e.g., no parallelism at all, or creating a certain number
of threads or processes based on how many CPUs are available on the machine,
etc.).

Even more interesting, with the emergence of virtualization systems, it is
becoming increasingly common that an application can be run on a virtualized
server, and in that case the server could be dynamically reconfigured to allocate
or simulate a variable number of CPUs - in which case, the application can react
by changing its parallelization strategy and injecting different thread-handling
fragments at @Parallel locations.

6 Conclusions and future work

In this paper we have introduced @Java, a variant of Java which permits to
manipulate an application code at runtime in a structured, symbolic and type-

6The Java security model provides for that by externalizing policy decisions in a text
file which can be edited by the user, but with limited flexibility, essentially implementing a
source-based permission policy.
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safe way, by using annotations placed on single statements or blocks to define
code fragments and locations in the code.

While sharing similarities in its scope with traditional aspect-oriented pro-
gramming techniques, our contribution places a greater emphasis on the possi-
bility of manipulating the code at run-time, whereas aspect weaving is typically
performed at compile-time only. This important distinction opens the way to
a number of applications for which standard AOP techniques are not flexible
enough.

The techniques we presented, building on top of execution technology pro-
vided by virtual execution environments and on novel language features such as
custom annotations, change in a fundamental way the notion of lifecycle of a
program. Whereas customarily writing, compiling, linking, shipping, deploying,
installing, loading and running a program were considered completely distinct
phases, the ability to identify and process annotations both in source and in
object (.class) form, and at runtime in executable code, in a sense blends this
phases. Now, program code can be written at run-time; compilation can execute
user-provided code based on annotations found in source files, an installer can
manipulate the object code that has been deployed based on a specific machine
architecture, etc.

The @Java language and its code-manipulation capabilities are a contribution
towards reaching this vision, in which code manipulation and program re-writing
is a substantial part of execution. The language itself could be extended to
address annotation of (sub-)expressions, to cover cases where one might want
to manipulate, say, a new expression, or a method invocation. We intend to
address this issue as part of future work.

More work is also needed in two other directions: (i) on the application side,
by providing run-time support and case studies for common needs (e.g., logging,
security, parallelism), and (ii) on the technological side, by providing more flex-
ible and more efficient implementations of the code-manipulation primitives we
have defined.

The @Java source-to-source compiler and the associated JDAsm code ma-
nipulation library have been released as open source, and are currently avail-
able, respectively, at http://at-java.sourceforge.net and http://jdasm.
sourceforge.net.
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