
ON THE EFFICIENT CAPTURE OF DANGEROUS CRIMINALS

Vincenzo Gervasi
Giuseppe Prencipe
Dipartimento di Informatica, Università di Pisa
{gervasi,prencipe}@di.unipi.it

1. Prologue

President Hush1 was extremely proud of his robotics troops. The search for the notorious crimi-
nal Assuma’ Hex Loaded was proceeding fairly well, and the robotic troops on the ground were
on the verge of surrounding and capturing the escapee. Compared to this, the thrill of his chief
scientific advisor, who was babbling about how efficient the new capture algorithm was, seemed
to President Hush rather incomprehensible. To him, what mattered was that the robots could
reach and surround the enemies, making sure they could not escape, and keep them in check
until the bomb squad could come and get rid of that nuisance. Of course, this tactic would cause
the loss of all the robots as well, but in the end robots were expendable, did not vote, did not
have a family awaiting them back home, and their loss was not necessarily a sad occurrence, in
view of the needs of the arm lobby. Or at least, this was what his advisor Condoglianza kept
saying him.

Defense Secretary Donald Duckfield had a completely different point of view. He had always
felt that the extermination of the enemy had to be performed with maximal efficiency. It was
not enough to be effective, the robotic troops had to be optimal. Indeed, he had allocated 7.5
quadrillion dollars to a promising project comparing the performances of different algorithmic
approaches to the problem.

Of course, we could not afford to let such an important sourceof funding go. So, while
waiting for a promised national grant of 7.5 euros, we settled to study the effectiveness of several
algorithms to accomplish the desired task of reaching and surrounding an enemy unit fleeing in
a hostile battlefield. This paper reports on the finding of ourinvestigation.

2. Formalizing the capture problem

Consider an open area where a set of robotic troopers are parachuted at random spots to surveil
a restricted area. Their task is tocapturean hostile unit, orenemy, that could possibly enter the
surveilled zone: the robots consider their task accomplished when they surround the enemy, so

1All persons and events portrayed in this paper are entirely fictional. Any coincidence with real persons or facts is
purely coincidential.

FUN with Algorithms

that it has no means to escape. This problem can arise in a number of real-world situations be-
yond battlefield operations. For example, sensible areas where little or no traffic is expected, like
airfields runways and aprons, or logistic compounds, could be effectively patrolled by robotic
units.

In all these cases, the robots must be truly autonomous — the problem must be solved
without relying on any kind of on-site infrastructure. Also, robots could conceivably be knocked
off by opponents, and radio communications among them couldbe intercepted (thus revealing
their presence) or disrupted (thus making them useless). Hence, a good solution to our problem
must do away with explicit communication, relying instead only on the intrinsic capabilities
of the robots; it must assume no external help, and should be able to adapt to a varying (i.e.,
decreasing) number of robots.

This problem has been extensively explored in a graph-oriented setting [3, 7]: the robots have
to patrol an area that is described as a graph; they can move only from node to node, following
the edges connecting them. In the graph there is also an enemyrobot, and the patrolling units
must surround him: in particular, they have to occupy all theneighborhood of the node where
the enemy is. In contrast to this kind of study, in our approach the patrolled area is modelled as
a two dimensional plane where our agents, as well as the enemy, can freely move.

A related problem to ours has been analyzed in [12, 13], wherethe robots and the enemy
could move strictly inside a polygonal area (including its border): each surveilling robot could
hold a flashlight that emits rays of light whose direction canbe changed continuously. In their
model, each robot can only see points lying on one of the rays.The goal of the robots is to detect
the presence of the enemy. This is different from our problem, in that we assume the robots can
always see the enemy, but we ask them to surround him rather than just detecting him.

Following the motivations that prompted previous studies ([6, 10, 11]), in this paper we adopt
extremely simple units to study the problem: the robots are completely anonymous, identical (no
identities are used during the computation), asynchronous, memoryless, and with no means of
direct communication. We describe two algorithms, the samefor all the robots, that allows them
to surround the enemy, limiting his movement ability, and tokeep him surrounded until some
external event concludes the pursuit. Moreover, we presentresults of computer simulations that
show the effectiveness of the proposed solution.

2.1.Computational model

We consider a system composed byn autonomous mobile robots. Each robot is capable of
observing its surrounding, computing a destination based on what it observed, and moving to-
wards the computed destination; hence it performs an (endless) cycle of observing, computing,
and moving.

Each robot has its ownlocal viewof the world. This view includes a local Cartesian coordi-
nate system having an origin (that without losing generality we can assume to be the position of
the robot), a unit of length, and thedirectionsof two coordinate axes, together with theirorienta-
tions, identified as the positive and negative sides of the axes. Notice that there is no agreement
among the robots on the chirality of the respective coordinate systems (i.e., the robots do not

2

On the Efficient Capture of Dangerous Criminals

share the same concept of where North, East, South, and West are).
The robots are modeled as units with computational capabilities, which are able to freely

move in the plane. They are equipped with sensors that let each robot observe the positions of
the others with respect to their local coordinate system. Each robot is viewed as a point, and can
see all the other fellow robots in the patrolled area, as wellas the enemy.

The robots act totallyindependentlyandasynchronouslyfrom each other, and do not rely on
any centralized directives, nor on any common notion of time. Furthermore, they areoblivious,
meaning that they do not remember any previous observation nor computations performed in
the previous steps.

The robots areanonymous, meaning that they are a priori indistinguishable by their appear-
ances, and they do not have any kind of identifiers that can be used during the computation.
They can only distinguish the enemy from a fellow robot. Moreover, there are no explicit direct
means of communication; hence the only way they have to acquire information from the fellow
robots is by observing their positions.

They execute the same algorithm, which takes as input the observed positions, and returns
a destination point towards which the executing robot moves. A robot, asynchronously and in-
dependently from the other robots, (i)observesthe environment (Look), by taking a snapshot of
the positions of all other robots and of the enemy with respect to its local coordinate system2; (ii)
It computesa destination pointp according to its oblivious algorithm (Compute); the local com-
putation is based only on the current (i.e., at the time of thepreviousLook) locations observed
by the robot. (iii) Finally, the robotmovesan unpredictable amount of space towardsp (Move),
which is however assumed to be neither infinite, nor infinitesimally small (see Assumption A1
below), and goes back to theLookstate.

In the model, there are three limiting assumptions. The firstrefers to space; namely, the
distance traveled by a robot during a cycle of activity.

Assumption A1 (Distance) The distance traveled by a robotr in a Move is not infinite. Fur-
thermore, it is not infinitesimally small: there exists a constantδr > 0, such that if the
destination point is closer thanδr, r will reach it; otherwise,r will move towards it by at
leastδr.

The reason for introducingδr is to ensure progress in the movement of the robots; in other
words, ifr aims to reach a destination pointp, A1 ensures thatr will reachp in a finite number
of cycles. Without such an assumption, it would be impossible to prove the termination of any
algorithm in a finite number of cycles. As no other assumptions on space are made, the distance
traveled by a robot in a cycle is unpredictable.

The second assumption in the model refers to the duration of acycle of activity.

Assumption A2 (Cycle of Activity) The amount of time required by a robotr to complete a
cycle of activity is not infinite. Furthermore, it is not infinitesimally small: there exists a
constantεr > 0 such that the cycle will require at leastεr time.

2Since each robot is viewed as a point, its position in the plane is given by its coordinates.

3

FUN with Algorithms

The purpose of A2 is to make sure that the capturing task does not trivially fail because
some robot takes an infinite time to complete one of its cycles. As no other assumption on time
exists, the resulting system is trulyasynchronousand the duration of each activity (or inactivity)
is unpredictable. As a result, robots can be seen while moving, and computations can be made
based on obsolete observations.

Finally, since we need to model robots that “continuously” move, we assume that

Assumption A3 (Continuous Movement) The time spent in looking and computing is negligi-
ble compared to the time spent in moving.

We stress that no one of the followers knows in advance the path that the enemy will follow,
nor can it derive it at run-time (e.g., by observing the position of the enemy at different times or
his heading in order to estimate the current direction).

2.2.Formalization

We consider a system of autonomous mobile robots that have topatrol a given area, modelled as
an infinite plane. A distinguished independent unitE, theenemy, is also on the plane. The goal
of the robots is to surround the enemy, while keeping at a certain distance from him, in order to
reduce his leeway. In particular, the robots must place themselves as to minimize the maximum
distance that the enemy can place between himself and the nearest robot along any escape route.

Let l1 andl2 be respectively the minimum and maximum distance from the enemy that we
want the robots to maintain (given as constants of the problem). It is easy to see that the problem
as stated is solved when then robots place themselves uniformly spaced on a ring at a distance
l1 ≤ l ≤ l2 from the enemy, thus forming a regular polygon of characteristic angleφ = 2π/n
and radiusl1 (see [8] for a fully formal definition of the problem). We callcapture areathe ring
C2 \ C1, with C1 andC2 the two circles centered inE and having radiusl1 andl2, respectively.

Since the enemy keeps moving, it is impossible for the robotsto maintain a perfect solution.
In the following we will consider sub-optimal solution acceptable, as long as they are indefinitely
maintained once first reached at timet0. In this context, a sub-optimal solution is defined as
having each robot at a distance betweenl1 − ε1 andl2 + ε2.

The constantsε1 andε2 are also tied to the temporal features of the asynchronous behavior
of the robots. In fact, the longer the time between two consecutive Looks of a robot, the more
outdated the snapshot taken of the other robots’ positions becomes. Hence, computationally
slow robots will only be able to guarantee a sub-optimal solution for relatively large values of
ε1,2, while faster robots will be able to better approximate the optimal solution.

Finally, it is worthwhile to observe that the robots have no hope of reliably capturing an en-
emy faster than themselves. Therefore, a necessary condition for the solvability of the problem
is that the enemy is slower than the slowest of the robots, i.e.

vI < min
i

vri
,

wherevk denotes the linear velocity ofk.

4

On the Efficient Capture of Dangerous Criminals

3. Algorithms

We present here two algorithms solving our problem using twodifferent approaches, and com-
pare their performances in the next section. The first algorithm, that is a variation of the one
introduced in [8], tackles the problem from a strictly algorithmic perspective, while the second,
that is introduced here, relies on an heuristic.

An algorithm for our robots will have in input the positions of all the other robots at the time
of the lastLook, and the position of the enemy, expressed as set of points in the local coordinate
system of the robot.

The algorithm must return as output the pointp towards which the robots should move, also
expressed in the local coordinate system.(E .x,E .y) will denote the coordinates ofE , andMe

the current position of the robot executing the algorithm, that is (0, 0) in its local coordinate
system.

Note that a requirement of any capture algorithm is that the robots must have common
knowledge [9] of the unit of measure. This is needed to allow them to have a common un-
derstanding of constantsl1 andl2, and to agree on the distance they have to be to surround the
enemy.

3.1.The LAT Algorithm

Algorithm 1 (LAT) An algorithmic solution to the capture problem.
1: Chief := Closest Robot toE;
2: If I Am Chief Then
3: l := dist(Me,E);
4: target := (E .x · l−l1

l
,E .y · l−l1

l
);

5: Else
6: φ = 2π/n;
7: sortByAngle(Robots,E ,Chief);
8: k :=myRank();
9: θ :=angle(MyX , [E ,Chief));

10: α := k · φ + θ;
11: l := max(l1, dist(E ,Chief)) · (1 + ε);
12: target := (E .x + l · cos(α),
13: E .y + l · sin(α));
14: C := Circle Centered inE With Radiusl;
15: If [Me, target] ∩ C 6= ∅ Then
16: target :=NonIntersTarget(E , target, l);
17: Return target ;

The idea of the algorithm is as follows. First, the closest robot to the enemy is determined
(call it chief). The chief simply moves towards or away from the enemy, trying to maintain a

5

FUN with Algorithms

E

target

target ′

rj

Chief

Figure 1: Sideway stepping inNonIntersTarget() routine.

distancel1 from him (Lines 2–4). All the other robots aim to reach the vertices of the regular
n-gon inscribed in a circle centered in the observed enemy’s position and having as radiusl such
thatl1 < l ≤ l2 (Lines 6–16). Once they reach such a position, the robots’ task is achieved.

In order to reach an agreement on which vertex is assigned to each robot, the robots are
sorted by routinesortByAngle(): in particular, the chief is considered to be the first robot
in the order; the other robots are sorted, in increasing order, according to the angle each of
them forms with the enemy and the chief (Line 7). At this point, the targets (i.e. the positions
they have to reach in order to complete the task) of the robotsare computed: these are the
vertices of the regular polygon having characteristic angle φ = 2π/n, with the first vertex
being on the chief’s position, and inscribed in the circleC centered inE and having radius
l = max(l1, dist(E ,Chief)) ·(1+ε) (Line 11). The target of thei-th robot in the ordering is the
i-th vertex of the polygon. Routineangle() in Line 9 returns the angle between the half-line
[E ,Chief) and thex axis in the local coordinate system of the executing robot: this angle is
used to rotate the polygon to be formed so that the first vertexcoincides with theChief(Line 10).
The reason for the targets being computed with respect toC and not with respect to a smaller
circle of radius exactlyl1, is to reduce cases where another robot becomes chief, displacing the
previous chief: in fact, such displacements would introduce some instability in the algorithm,
slowing down convergence.

Also, it is possible that a robotr, to reach its target, crossesC. This too would intro-
duce instability in the algorithm, since in so doingr could come closer toE than the current
chief, thus becoming chief itself. To avoid this effect, Line 16 of the algorithm invokes routine
NonIntersTarget(), that forcesr to take a route outsideC, so that no crossing is possible:
r moves sideways until a straight path from its current position to its assigned target does not
crossC (see the example depicted in Figure 1). In this routine, the constantρ represents the
length of the sideway step. The robot will keep stepping sideway until necessary to reach its real

6

On the Efficient Capture of Dangerous Criminals

target without crossingC.

Routine NonIntersTarget(E , target, r′)

β := arctan(target .y/target .x);
γ :=angle(Me,E , target);
If γ > π Then

β := beta + π/2;
Else

β := beta− π/2;
Return (ρ · cos(β), ρ · sin(β)).

3.2.The HEUR-S Algorithm

Algorithm 2 (HEUR-S) An heuristic solution to the capture problem

1: l := dist(Me,E);
2: target := (E .x · l−l1

l
,E .y · l−l1

l
);

3: dx := E .x · l−l1
l

;
4: dy := E .y · l−l1

l
;

5: cord = 2 · l1 · sin
(

π
n

)
;

6: For All i = 1..n such that I am notri Do
7: l′ := dist(Me, ri);
8: If l′ < cord Then
9: dx := dx + ri.x · l′−cord

l′
;

10: dy := dy + ri.y · l′−cord
l′

;
11: Return (dx, dy);

The intuition behind Algorithm 2 is as follows. All robots are subject to a force, attracting
them towards the enemy if they are farther thanl1 from him, or repulsing them if they are nearer.
Moreover, when two robots come closer to each other than a certain distancecord, they repel
each other. The distancecord is computed as the side of ann-gon of radiusl1 (Line 5).

While the algorithm by itself does not coordinate the behavior of each robots with that of
its fellows, like Algorithm 1 does when establishing a shared assignment of robots to vertices,
it has as a lowest-energy equilibrium a configuration where the robots do evenly surround the
enemy. In this sense, the behavior of Algorithm 2 is trulyemergent, in that no explicit and direct
solution of the problem is provided in the code (see [1, 2]).

7

FUN with Algorithms

(a) (b)

Figure 2: Traces of the behavior of the robots according to (a) the LAT algorithm, and (b) the
HEUR-S algorithm. The camera is fixed on the enemy, that thus appears static.

4. Evaluation of the Algorithms

Experimental setting. To assess the effectiveness of the two algorithms, we ran a number of
tests using numerical simulations. Each run included a random3 number of robots between 2 and
50; the enemy and the robots were initially placed at random in a256 × 256 units square. The
robots had their axes orientation and direction assigned randomly, and linear speedvf between
0.5 and 5 space units per time units.

The enemy’s course was determined as follows: at all times, the enemy would move forward
according to its linear velocity (determined randomly). Ateach move, with a probability of
1/10, the enemy could start turning to its left or right, withrandom angular velocity less than its
maximum angular velocity. If already turning, with probability 1/100 the enemy could stop and
continue its course as a straight line (these parameters ensured curved, irregular trajectories).

As an example, Figures 2(a) and 2(b) show the traces of two runof the LAT and HEUR-S
algorithm, respectively.

Measures. To measure the convergence features of the algorithms, we measured two param-
eters. The first one,νr, measures how many robots have reached the capture area, as aratio of

3In all cases, random values were obtained from a linear distribution.

8

On the Efficient Capture of Dangerous Criminals

the total number of robots:

νr =
|{ri|l1 ≤ dist(ri,E) ≤ l2}|

n
.

The second one,φr, measures the ratio between the largest angle between two angularly
adjacent robots in the capture area, and the optimal value ofsuch an angle (2π/n), i.e.

φr =
n · maxi,j{riÊrj}

2π
,

with i 6= j, such that there is nork in the region of the plane delimited by the half-lines[E , ri)
and[E , rj) intersected with the capture area. Values ofφr close to 1 indicate that the robots
are close to the optimal capture configuration.

Results. In all cases the robots were able to surround the enemy, correctly solving the problem
(although with sub-optimal solutions, as described earlier). The results obtained by averaging
the measures above over 1000 random runs of our algorithms, with each run comprising 4000
Look–Compute–Movecycles are shown in Figures 3 and 4.

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f r
ob

ot
s

in
 c

ap
tu

re
 r

an
ge

cycles

νr for LAT
νr for HEUR-S

Figure 3: Average number of robots in the capture area (νr) in the simulations.

As can be observed in the figures, both algorithms exhibit reasonably fast and stable conver-
gence to a good solution. In particular, Algorithm 1 (LAT) sports a slower convergence of the
robots into the capture area than Algorithm 2 (HEUR-S), as shown in Figure 3. This is not sur-
prising, as LAT directs the robots directly towards their final positions, and may have to re-route
them laterally whenNonIntersTarget() is called. In contrast, HEUR-S simply moves the

9

FUN with Algorithms

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f o
pt

im
al

 e
sc

ap
e

cycles

ϕr for LAT
ϕr for HEUR-S

Figure 4: Average relative largest angle between two angularly adjacent robots in the capture
area (φr) in the simulations.

robots towards a position distantl1 from the enemy, leaving their uniform distribution around
the enemy for a later stage (after the robots have entered thecapture area). It is worthwhile to
notice that, whileνr for LAT converges more slowly than that of HEUR-S, both algorithms have
essentially the same asymptotic performance, with all the robots reaching the capture area.

On the other hand, LAT behaves much better than HEUR-S in terms of φr (see Figure 4).
The more precise strategy employed by LAT allows the robots to better approximate the optimal
equidistribution around the enemy. Indeed, LAT reaches 90%of the optimal distribution, while
HEUR-S stops at 72%.

5. Fault Tolerance

An interesting aspect in the study of autonomous robots is the characterization of their behavior
in the presence of faults. In this section, we analyze the behavior of our algorithms when a
particular type of faults — transient hang-ups of the robots, during which they stop moving —
can occur.

This fault model is based on two parameters, namely, the probability of occurrence of a fault
pf , and the probability of resuming the normal behaviorpr. Initially, all robots are in order. At
each cycle, with probabilitypf , a robot can enter its faulty state; in this case, it stops moving,
but continues executing itsLook-Compute-Movecycle. A faulty robot can recover and switch
back to normal behavior with probabilitypr.

It can be seen easily that the obliviousness of the robots in our model makes the system self-
stabilizing in the sense of Dijkstra [4] — that is, if after a certain number of cyclesK faults no

10

On the Efficient Capture of Dangerous Criminals

Plots ofνr for various values ofpf andpr.

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000

%
 o

f r
ob

ot
s

in
 c

ap
tu

re
 r

an
ge

cycles

}
}

}

(a)

pr = 0.0025

pr = 0.01

pf = 0.01

pr = 0.04

pf = 0.01

pf = 0.01

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000
%

 o
f r

ob
ot

s
in

 c
ap

tu
re

 r
an

ge

cycles

}

}

}

(b)

pr = 0.04

pf = 0.04

pr = 0.01

pf = 0.04

pr = 0.16

pf = 0.04

Plots ofφr for various values ofpf andpr.

0%

5%

10%

15%

20%

25%

30%

35%

40%

 0 500 1000 1500 2000

%
 o

f o
pt

im
al

 e
sc

ap
e

cycles

}
}

}

(c)

pr = 0.04

pf = 0.01

pr = 0.01

pf = 0.01

pr = 0.0025

pf = 0.01

0%

5%

10%

15%

20%

25%

30%

35%

40%

 0 500 1000 1500 2000

%
 o

f o
pt

im
al

 e
sc

ap
e

cycles

}
}

}

(d)

pr = 0.16

pf = 0.04

pr = 0.04

pf = 0.04

pf = 0.04

pr = 0.01

Figure 5: Simulation results in the presence of faults. In all plots, the continuous line represents
the measures for LAT, while the dashed line represents the measures for HEUR-S.

longer happen, the robots will solve their task correctly. Indeed, in such a setting we can imagine
the configuration of the robots at cycleK as the starting one, and since our algorithms solve the
problem starting from any arbitrary configuration, the self-stabilization property trivially holds.

Hence, we focus here on the performances of the algorithms when faults occur indefinitely.
Figures 5(a) and 5(b) show theνr measured for the two algorithms with various values forpf

andpr. As can be observed, the HEUR-S algorithm consistently beats the LAT algorithm under
this measure. On the contrary, LAT performs better, even in the presence of faults, according to
theφr measure, as can be observed in Figures 5(c) and 5(d).

It should be noted that, on average, the robots will be in order for pr/(pf + pr) of the time,
and faulty in the remainingpf/(pf +pr) of the time. Thus, we can expect the optimalνr andφr

to be reduced accordingly: for example, ifpf = pr, we can expect half the robots to be faulty

11

FUN with Algorithms

at any given time, and thus the measuredνr andφr to be at most 0.5 (and indeed, this behavior
can be observed in Figure 5(c) forpf = pr = 0.01, after the initial transient due to the fact that
no robot is faulty at the start of the simulation).

This model, however, is not totally accurate, since the robots have a certain “leeway” due to
several factors: first, the capture area can be large (i.e.,l2 >> l1); second, the robots are faster
than the enemy, thus they can make up for any delay due to a fault with their higher speed. In
particular, for higher values ofpr the time spent in a faulty state can be short enough that the
effects of the fault are hidden by the “leeway” effect described above. For example, this is what
happens in Figure 5(b) forpf = pr = 0.04, where the HEUR-S algorithm attainsνr = 60%
even if our reference “optimum” value would be 50%.

The data from our simulations seem to indicate that, in general, the HEUR-S algorithm is
more robust than the LAT algorithm in the presence of faults,as far asνr is concerned. In other
words, HEUR-S comes closer to the best possible performancewith the given portion of faulty
robots.

Both algorithms behave much worse w.r.t.φr. In fact, in no case they come close to the
reference optimum value. For example, as can be observed in Figure 5(c) forpf = pr = 0.01,
the value measured forφr is around 15%, compared to a reference optimum of 50%. This isnot
surprising, since we do not have forφr any leeway comparable to that provided forνr by the
range(l1, l2). In φr, any deviation from the “right” position causes an immediate drop ofφr.

6. Conclusions

In this paper we studied the capture problem: a number of robotic robots that patrol a restricted
area have to capture an enemy that sneaked inside the area. The robots are non-communicating,
asynchronous, anonymous and memoryless vehicles that can freely moves on a plane; the enemy
is an external agent whose behavior is not known to the robotsin advance.

We have provided two algorithms to solve the capture problem, that only assumes that the
robots share a common unit of distance, but need not to have a common sense of direction (i.e.,
a common coordinate system).

Indeed, the algorithms we proposed exhibits remarkable robustness, and numeric simula-
tions indicate that the enemy is efficiently captured in a relatively short time and kept surrounded
after that, as desired. The solution we proposed is self-stabilizing [4, 5]. In particular, any ex-
ternal intervention (e.g., if one or more of the robots are stopped, slowed down, knocked out, or
simply faulty) does not prevent the completion of the task.

Several variants of the algorithms we have presented are possible. In particular, both algo-
rithms can be made to react dynamically to the detection of faults in their fellows, either by
direct observation, or by considering as potentially faulty all the robots that are outside the cap-
ture area. These changes could improve the behavior of the robots when large number of units
at a time is faulty (e.g.,pf = 0.04 andpr = 0.01 in Figures 5(b) and 5(d)).

Another aspect worth studying is which kind of algorithms can be used when a bounded
amount of memory is available to the robots, or when their observational capability is reduced
(e.g., obstructed by other robots, or limited by distance).Moreover, these aspects would com-

12

On the Efficient Capture of Dangerous Criminals

bine with the presence of faults (e.g., can we assume that robots outside of our field of vision
are faulty?), giving rise to several complex settings. We intend to investigate these issues as part
of our future work.

References

[1] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. International Journal of Robotics
Research, 8(4):92–112, 1989.

[2] T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot Teams.IEEE Transac-
tion on Robotics and Automation, 14(6), 1998.

[3] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an Intruder by Mobile Agents. In
14

th Symposium on Parallel Algorithms and Architectures 2002 (SPAA 2002), 2002.

[4] E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control.Communication of the ACM,
17(11):643–644, November 1974.

[5] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[6] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of a Set of Au-
tonomous Mobile Robots. InIEEE Intelligent Vehicle Symposium (IV 2000), pages 480–485, 2000.

[7] N. Foukia, J. G. Hulaas, and J. Harms. Intrusion Detection with Mobile Agents. In11th Annual
Conference of the Internet Society (INET 2001), 2001.

[8] V. Gervasi and G. Prencipe. Robotic Cops: The Intruder Problem. In2003 IEEE Conference on
Systems, Man and Cybernetics (SMC 2003), pages 2284–2289, October 2003. Washington D.C.,
USA.

[9] J. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed Environment. In
Proceedings of the3rd ACM Symposium on Principles of Distributed Computing, pages 50–61, 1984.

[10] Y. Oasa, I. Suzuki, and M. Yamashita. A Robust Distributed Convergence Algorithm for Autonomous
Mobile Robots. InIEEE International Conference on Systems, Man and Cybernetics, pages 287–292,
October 1997.

[11] G. Prencipe. CORDA: Distributed Coordination of a Set of Autonomous Mobile Robots. InPro-
ceedings Fourth European Research Seminar on Advances in Distributed Systems (ERSADS 2001),
pages 185–190, May 2001.

[12] I. Suzuki and M. Yamashita. Searching for a Mobile Intruder in a Polygonal Region.Siam Journal
on Computing, 21(5):868–888, 1992.

[13] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for Mobile Intruders in a Polygonal
Region by a Group of Mobile Searchers.Algorithmica, 31:208–236, 2001.

13

