
Fundamenta Informaticae 77 (2007) 71–103 71

IOS Press

CoreASM: An Extensible ASM Execution Engine∗

Roozbeh Farahbod†

School of Computing Science, Simon Fraser University

Burnaby, B.C., Canada

rfarahbo@cs.sfu.ca

Vincenzo Gervasi

Dipartimento di Informatica, Università di Pisa,

Pisa, Italy

gervasi@di.unipi.it

Uwe Glässer

School of Computing Science, Simon Fraser University

Burnaby, B.C., Canada

glasser@cs.sfu.ca

Abstract. In this paper we introduce a new research effort in makingabstract state machines
(ASMs) executable. The aim is to specify and implement an execution engine for a language that
is as close as possible to the mathematical definition of pureASMs. The paper presents the general
architecture of the engine, together with a high-level description of the extensibility mechanisms
that are used by the engine to accommodate arbitrary backgrounds, scheduling policies, and new
rule forms.

Keywords: CoreASM, Abstract state machines, Specification languages, Executable specification

1. Introduction

Abstract state machines [16], or ASMs, are well known for their versatilityin computational and mathe-
matical modeling of architectures, languages, protocols and virtually all kinds of sequential, parallel and

∗This paper is a revised and updated version of [26].
†Address for correspondence: School of Computing Science, SimonFraser University, Burnaby, B.C., Canada

72 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

distributed systems with an orientation towards practical applications. The particular strength of this ap-
proach is the flexibility and universality it provides as a mathematical framework for semantic modeling
of functional requirements in terms of abstract machine models and their runs. Building on a rigorous
mathematical foundation [5, 37], ASM abstraction principles provide an effective instrument for mod-
eling the construction of software designs prior to coding and for analyzing such designs by reasoning
about design choices and their implications. Typical deficiencies often hidden in informal requirements,
such as ambiguities, loose ends and inconsistencies, thereby become explicit and can more easily be
eliminated. To this end, abstraction and formalization help gaining a clearer understanding of the prob-
lem to be solved, thus reducing the risk of making premature decisions with fatal consequences [41].

Viewing behavior of discrete dynamic systems as evolution of abstract states, formally represented
as variants of Tarski structures, is invaluable for bridging the gap between informal requirements and
precise specifications in the earlier phases of system design. Similarly, this angle also simplifies the
task of constructing models of requirements that are being extracted from implementations in reverse
engineering applications. Both directions have been studied extensively by ASM researchers and devel-
opers in academia and industry for more than 15 years, leading to a solid methodological foundation
for building ASM ground models[9]. Intuitively, an ASM ground model may be considered a semantic
‘blueprint’ of the key system requirements that need to be established in a precise and reliable form with-
out compromising any conceivable refinements [10]. The role and natureof ground models, as discussed
in [9], leads itself to the conclusion that the concept of ground model is inevitably present in every sys-
tem design, but often not in an explicit form. Thus, the origin and motivation for the development of
ASM specification, validation and verification techniques [8] has been the desire to make ground mod-
els visible and inspectable by analytical means and empirical techniques, exploiting machine assistance
where appropriate. Widely recognized applications include semantic foundations of industrial system
design languages like the ITU-T standard for SDL [33, 48, 25, 43], theIEEE language VHDL [13, 12]
and its successor SystemC [47], programming languages like JAVA [51, 23], C# [11] and Prolog [6, 7],
Web service description languages [29, 30, 28], communication architectures[34, 35], embedded control
systems [15, 4, 14], et cetera.1

The research we describe in this paper focuses on the design of a lean,executable ASM language,
calledCoreASM, in combination with a supporting tool environment for high-level design, experimental
validation and formal verification (where appropriate) of abstract machine models. TheCoreASM envi-
ronment consists of a platform-independentenginefor executing theCoreASM language and a graphical
user interface (GUI) for interactive visualization and control ofCoreASM simulation runs. The engine
comes with a sophisticated and well defined interface, called Control API, thereby enabling future devel-
opment and integration of complementary tools, e.g., for symbolic model checking [21] and automated
test generation [32]. The design ofCoreASM is novel and the underlying principles are unprecedented
among the existing executable ASM languages, including the most advanced ones: AsmL [46], the ASM
Workbench [18], XASM [1], and AsmGofer [49].

Exploring the problem space for the purpose of writing aninitial specificationcalls for a language
that emphasizes freedom of experimentation and supports the evolutionarynature of design being a cre-
ative activity. Such a language must allow writing highly abstract and concise specifications by minimiz-
ing the need for encoding in mapping the problem space to a formal model. Theprinciple of minimality,
in combination with robustness of the underlying mathematical framework, also makes easy modifiabil-

1See also the ASM website atwww.eecs.umich.edu/gasm/and the overview in [16].

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 73

Figure 1. Background and Motivation.

ity feasible, effectively supporting the highly iterative nature of specification and design. In our work we
address the needs of that part of the software development process that is closest to the problem space,
as illustrated in Figure 1.

TheCoreASM language and supporting tool architecture focus on early phases of thesoftware de-
sign process; consequently, primary concerns are towards the world of problems. In particular, we
want to encourage rapid prototyping with ASMs, starting with mathematically-oriented, abstract and un-
typed models and gradually refining them down to more concrete versions — apowerful technique for
specification with refinement that has been exploited in [16] and [10]. In this process, we aim at main-
taining executability of even fairly abstract models. Another important characteristic that differentiates
our endeavor from previous experiences is the emphasis that we are placing on extensibility of the lan-
guage. Historical developments have shown how the original, basic definition of ASMs from the Lipari
Guide [36] has been extended many times by adding new rule forms (e.g.,choose) or syntactic sugar
(e.g.,case). At the same time, many significant specifications need to introduce special backgrounds2,
often with non-standard operations. We want to preserve in our language the freedom of experimenta-
tion that has proven so fruitful in the development of ASM concepts, and,to this end, we have designed
our architecture around the concept ofplug-ins that allows to customize the language to specific needs.
The argumentative structure leading from our high-level goals to specificdesign choices is summarized
graphically in Figure 2.

An extensible, platform independent tool package (the language, its engine, and the GUI) will be
an asset both for industrial engineering of complex software systems by making software specifications
and designs more robust and reliable, and for researchers that will beable to test in practice proposed
extensions to the basic ASM language.

This paper is structured as follows. Section 2 provides first a high-leveloverview of the architecture
of theCoreASM engine, and then presents its components in some detail; a discussion of the extensibil-
ity provisions in the architecture completes the section. Section 3 presents an abstract specification of the
CoreASM language, and shows, through several examples, how the core language and its extensions are

2We callbackgrounda collection of related domains and relations packaged together as a single logical unit.

74 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Support for "rapid prototyping"

Minimal encoding Practical experimentation

Untypedness Abstract GUI and
interaction

Control API

Support to early specification

Platform

undefined macros

independence

Wide applicability

Domain−specific language

(Optional)
Run−time type

checking execution for
Symbolic

execution

Plug−in architectureJava Implementation

Extensibility

Figure 2. CoreASM requirements and design choices.

specified. Section 4 provides an account of related work; this is followedby our conclusions and plans
for future work, which conclude the paper.

2. Architecture Overview

TheCoreASM engine consists of four components: aparser, aninterpreter, ascheduler, and anabstract
storage(Figure 3). The interpreter, the scheduler, and the abstract storage work together to simulate an
ASM run. The engine interacts with the environment through a single interface, called thecontrol API,
which provides various operations such as loading aCoreASM specification, starting an ASM run, or
performing a single step.

Figure 3. Overall Architecture ofCoreASM.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 75

The parser reads aCoreASM specification and provides the interpreter with an annotated parse tree
for each program. The interpreter then evaluates the programs in the specification by examining all the
rules and generating update sets. The abstract storage manages the datamodel for the abstract state.
In particular, it stores the current state of the simulated machine along with the history of its previous
states, which can be used to examine the run traces or to rollback to a previous state and resume the
computation. The number of possible rollbacks is configurable.3 To evaluate a program, the interpreter
interacts with the abstract storage in order to obtain values from the current state and generates updates
for the next state. The role of the scheduler is to orchestrate the whole execution process. In particular,
for distributed ASMs the scheduler is responsible for selecting the set of agents that will contribute to
the next computation step and coordinating the execution of those agents. The scheduler also manages
cases of inconsistency of update sets generated in a step.

The execution process of a single step in theCoreASM engine is as follows (refer also to Figures 6
to 9 in Section 2.2):

1. The Control API sends a STEP command to the scheduler.

2. The scheduler gets the whole set of agents from the abstract storage(from the special setagents).

3. The scheduler selects a subset of these agents, which will perform computation in the next step.

4. The scheduler selects a single agent from this set and assigns it to the special variableself in the
abstract storage.

5. The scheduler then calls the interpreter to run the program of the current agent (retrieved by ac-
cessingprogram(self)in the current state).

6. The interpreter evaluates the program.4

7. When evaluation is complete, the interpreter notifies the scheduler that the interpretation is fin-
ished.

8. The scheduler then selects another agent in the selected set of agents. If there are no more agents
left in the set, the scheduler calls the abstract storage to fire the accumulatedupdates.

9. The abstract storage notifies the scheduler whether the update set has any conflicts or it was suc-
cessfully fired. This notification can lead to selection of a different subset of agents to be executed
in the step, or can be sent back to the Control API.

2.1. CoreASM Components

In this section we present in more detail the basic components of theCoreASM engine, together with
their extensibility mechanisms. The architecture is partitioned along two dimensions(see Figure 4).
The first one, that we already presented, identifies the four main modules (parser, interpreter, scheduler,
abstract storage) and their relationships. The second dimension, that wewill discuss in Section 2.3,

3It is important to mention that the rollback mechanism can only rollback a simulated environment as part of a simulated run
(e.g., when monitored function values are read from a file), whereasthe “real” environment (e.g., anow function reading a
real-time clock) cannot be rolled back.
4This may include a series of interactions between the interpreter and the abstract storage to get values from the current state,
which in turn may require interpreting other code fragments, e.g., for derived functions.

76 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Figure 4. Layers and Modules of theCoreASM Engine.

distinguishes between what is in thekernelof the system — thus implicitly defining the extreme bare
bones ASM model — and what is instead provided by extension plug-ins.

The reader may notice that these two dimensions are instances of what in the ASM literature have
been calledmodular decompositionandconservative refinementrespectively. In particular, our plug-ins
progressively extend in a conservative way the capabilities of the language accepted by theCoreASM
engine, in the same spirit in which successive layers of the Java [51] andC# [11] languages have been
used to structure the language definition into manageable parts.

The first module in our architecture is the parser. The parser generatesannotated abstract syntax
trees for rules and programs of a givenCoreASM specification. Each node in these trees may have
a reference to the plug-in where the corresponding syntax is defined. For example in Figure 5, there
are nodes that belong to the backgrounds of sets and Booleans; this information will be used by the
interpreter and the abstract storage to perform operations on these nodes with respect to the background
each node comes from.

The second module, the interpreter, executes programs and rules, possibly calling upon background
plug-ins to perform expression evaluation, and upon rules plug-ins to interpret certain rules. It obtains
an annotated parse tree from the parser and generates a multiset ofupdate instructions, each of which
represents either an update, or an arbitrary instruction which will be processed at a later stage by plug-ins
to generate the actual updates (as will be described in more detail on page 82)5. The interpreter interacts
with the abstract storage to retrieve data from the current state and by executing statements it gradually
creates the update set leading to the next state.

The abstract storage maintains a representation of the current state of themachine that is being
simulated. The state is modeled as a map from locations to opaque elements from a universeELEMENT.
The abstract storage also provides interfaces to retrieve values from agiven location in the current state
and to apply updates.

5Where no confusion can arise, in the following we use the generic term “updates” to refer both to actual updates and to update
instructions.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 77

Figure 5. Sample Annotated Parse Tree.

In addition, it also provides other auxiliary information about the locations ofcurrent state, such as the
ranges and domains of functions6 or the background to which a particular function or value belongs to.

Finally, the scheduler orchestrates every computation step of an ASM run.In a sequential ASM, the
scheduler merely arranges the execution of a step: it receives aSTEPcommand from the control API,
invokes the interpreter, and instructs the abstract storage to aggregate the update instructions and fire the
resulting update set (if consistent) when the interpreter finishes the evaluation of the program. It then
notifies the environment through the Control API of the results of the step.

For distributed ASMs [16], the scheduler also organizes the execution ofagents in each computation
step. At the beginning of each DASM computation step, the scheduler chooses a subset of agents which
will contribute to the computation of the next update set. The scheduler directlyinteracts with the abstract
storage to retrieve the current set of DASM agents, to assign the current executing agent, and to collect
the update set generated by the interpretation of all the agents’ programs.Updates are then fired and the
environment is notified as for the previous case.

2.2. Engine Life-cycle

The whole process of executing aCoreASM specification using theCoreASM engine consists of the
following steps:

1. Initializing the engine

(a) Initializing the kernel

(b) Loading the plug-ins library catalogue

(c) Loading and activating plug-ins from a standard library

6Here, byrangeanddomainof a function we respectively refer to the set of all arguments for whichthe function value is not
undefand the set of all function values which are notundef.

78 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Figure 6. Control State ASM of a STEP command: Control API Module.

2. Loading aCoreASM specification

(a) Parsing the specification header

(b) Loading further needed plug-ins as declared in the header

(c) Parsing the specification body

(d) Initializing the abstract storage

(e) Setting up the initial state

3. Execution of the specification

(a) Execute a single step

(b) If termination condition not met, repeat from 3a

At the end of the execution of each step, the resulting state is optionally made available by the abstract
storage module for inspection through the Control API. The termination condition can be set through the
user interface of theCoreASM engine, choosing between a number of possibilities (e.g., a given number
of steps are executed; no updates are generated; the state does not change after a step; an interrupt signal
is sent through the user interface).

In the following we present a high-level but precise specification of the execution process (step 3a
above) which was presented informally at the beginning of this section. Thestructure of the specification
is that of a control state ASM, as shown in Figures 6 to 9. The current stateof such ASM is given by the
variableengineModethat controls the execution of rules at any step. The ASM rules corresponding to the
control state ASM are also presented.

The engine starts its execution in theIdle state of the Control API module (Figure 6). In this state,
the engine simply waits for aSTEPcommand from the environment7 (e.g., an interactive GUI or a
debugger), to start the actual computation; this is performed by changing the state toStarting Stepwhich
then transfers the control flow to the scheduler.

7The Control API provides several other commands that are needed toimplement a complete execution environment; we restrict
ourselves to the most basicSTEPcommand here to keep the presentation manageable.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 79

Figure 7. Control State ASM of a STEP command : Scheduler.

Figure 8. Control State ASM of a STEP command : Abstract Storage.

TheStartStep rule in the scheduler simply initializesupdateInstructions(the multiset of accumulated
update instructions for the step),agentSet(the current set of agents of the simulated machine), andse-
lectedAgentsSet(the set of agents selected to perform computation in the current step). The latter is then
assigned a value in theRetrieveAgents rule by querying the abstract storage module for the current value
of agentsin the simulated machine. We model the query process through the abstract functiongetValue(l)
which takes a locationl and retrieves the value of the location from the simulated state (a dual macro
SetValue models the process of sending a(l, value) pair to the abstract storage module for storing). We
use the notation“term” to denote the quoted variable or literal termterm in the simulated machine. The
state is then changed toSelecting Agents.

80 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Figure 9. Control State ASM of a STEP command : Interpreter.

Scheduler

StartStep ≡

updateInstructions:= {||}

agentSet:= undef

selectedAgentsSet:= {}

RetrieveAgents ≡

agentSet:= getValue((“agents”, 〈〉))

In theSelecting Agentsstate, if no agent is available to perform computation, the step is considered
complete; otherwise, theSelectAgents rule chooses a set of agents to execute in the current step. Pass-
ing then through theChoosing Agentsstate, theChooseAgent rule chooses an agent from this set and
changes the state toInitializing SELFwhich leads to the execution of theSetChosenAgent rule in the
abstract storage module. After the execution of the agent, the computed updates are accumulated byAc-
cumulateUpdates rule in theChoosing Next Agentstate, and control is moved back toChoosing Agents
until all selected agents have been executed.

Scheduler

SelectAgents ≡

chooses with s ⊆ agentSet∧ |s| ≥ 1 do
selectedAgentsSet:= s

ChooseAgent ≡

choosea in selectedAgentsSetdo
removea from selectedAgentsSet

chosenAgent:= a

ifnone
chosenAgent:= undef

AccumulateUpdates ≡

add updates(root(chosenProgram)) to updateInstructions

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 81

Two rules in the abstract storage module take care of setting the chosen agent (by assigning it to
the special variableself in the simulated state) and of retrieving the program associated with the chosen
agent (by accessingprogram(self) in the simulated state). Control then moves back to the scheduler at
theInitiating Executionstate.

Abstract Storage

SetChosenAgent ≡

SetValue((“self”, 〈〉), chosenAgent)

GetChosenProgram ≡

chosenProgram:= getValue((“program”, 〈“self”〉))

The execution of the program of the chosen agent is initiated in theInitiating Executionstate in
the scheduler and then starts in theProgram Executionstate in the interpreter. During the execution,
computed update instructions are progressively added toupdateInstructions, and when all selected agents
have performed their computation, control moves toAggregationstate in the abstract storage, where the
final update set is calculated and then applied to the current state.

Extending the basic idea presented in [51], we interpret a program by associating values, updates
and locations to nodes in the abstract syntax tree of the program. Before actually starting the interpreter,
the InitiateExecution rule removes the previously computed values from the tree (through theClearTree
macro, and sets the current position in the tree (denoted by the nullary function pos) to the root node
of the tree that represents the current program (that is, the program of the current agent, as established
above).

Scheduler

InitiateExecution ≡

pos:= root(chosenProgram)

ClearTree(pos)

The specification of the interpreter is explored in more detail in Section 3. We do not include here
the full specification for the interpreter; we show instead its most interesting feature, that is the way it
interacts with rule and background plug-ins to delegate interpretation of the associated extensions. As
already discussed earlier, nodes of the parse tree corresponding to grammar rules provided by a plug-
in are annotated with the plug-in identifier; here we abstract from the details of how this annotation
is implemented, and use instead an oracle functionplugin(node) for this purpose. If a node is found
to refer to a plug-in, rules provided by that plug-in are obtained through the pluginRulefunction and
executed; otherwise, the kernel interpreter rules (see Section 3) are used. Results of the interpretation of
nodepos are stored alongside the node, and accessed by three functions, namelyvalue(pos) will return
the computed value for an expression node,updates(pos) will return the set of updates generated by
a rule node, andloc(pos) will return the location denoted by the node (which is used as lhs-value for
assignments). Section 3.1 presents a more precise definition of these functions.

82 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Interpreter

ExecuteTree ≡

if ¬evaluated(pos) then
if plugin(pos) 6= undefthen

let R = pluginRule(plugin(pos)) in
R

else
KernelInterpreter

else
if parent(pos) 6= undefthen

pos := parent(pos)

Notice also in the macro above how as soon as a node is fully evaluated (lastelsebranch), the current
positionvalue(pos) is moved back to the parent node, if any, to continue evaluation.

After executing the programs of all the agents selected in theSelecting Agentsstate, all the update
instructions will have been accumulated inupdateInstructions. Control will move fromChoosing Agents
in the scheduler toAggregationin the abstract storage module. In theAggregationstate, the abstract
storage aggregates update instructions to compute updates on the locations of the state (through the
AggregateUpdates rule), checks the consistency of the computed updates (possibly interacting with the
relevant background plug-ins to evaluate equality), and either applies theupdates to the current state
of the simulated ASM byFireUpdateSet (thus obtaining its next state), or provides an indication of
failure by changing the state of theCoreASM engine toUpdate Failed. It is worthwhile to remark that
aggregation, which is the process of interpreting accumulated update instructions to generate a set of
updates, is obtained by delegating the actual interpretation to those plug-ins that provide aggregation
services, as shown in the rule below:

Abstract Storage

AggregateUpdates ≡

let ap = {a | a ∈ PLUGIN ∧ aggregator(a)} in
updateSet:=

⋃
p∈ap InvokeAggregation(p, updateInstructions)

FireUpdateSet ≡

forall (l, v) ∈ updateSetdo
SetValue(l, v)

Update instructions (vs. basic ASM updates) and the aggregation phase that aggregates those in-
structions into basic ASM updates are designed to support simultaneous incremental modification of
data structures inCoreASM. The idea of update instructions is inspired by the work of Gurevich and
Tillmann on partial updates [39, 40] where they provide an algebraic framework to support simultaneous
partial modification of data structures in Parallel ASMs and a systematic approach to ensure the con-
sistency and integrity of such modifications. The relationship between the ideaof update instructions in

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 83

CoreASM and the partial update framework deserves an in-depth comparison of thetwo approaches and
a discussion on their pros and cons, which is beyond the scope of this paper. We intend to further address
this in a separate paper.

If an inconsistent set of updates is generated in a step, theHandleFailedUpdate rule in the scheduler
module selects a different subset of agents for execution, and the step isre-initiated. The process is
iterated until a consistent set of updates is generated, in which case the computation proceeds in theStep
Succeededstate of the Control API, or all possible combinations have been exhausted, in which case
the Step Failedstate is entered instead. It should be noted that the selection will also consider subsets
containing a single agent, so the process fails only when no agent can successfully perform a step.

Depending on the outcome of the previous stage, either theNotifySuccess or theNotifyFailure rule
in the Control API notify the environment of the success or failure of the step, and return to theIdle
state awaiting further commands from the environment (e.g., anotherSTEPcommand to continue the
computation).

2.3. Plug-ins

In keeping with the micro-kernel spirit of theCoreASM approach, most of the functionality of the engine
is implemented through plug-ins to a minimal kernel. The architecture supports three classes of plug-ins:
backgrounds, rulesandpolicies, whose function is described in the following.

• Background plug-ins provide all that is needed to define and work with new backgrounds, namely
(i) an extension to the parser defining the concrete syntax (operators, literals, static functions, etc.)
needed for working with elements of the background; (ii) an extension to theabstract storage pro-
viding encoding and decoding functions for representing elements of the background for storage
purposes, and (iii) an extension to the interpreter providing the semantics for all the operations
defined in the background.

• Rule plug-ins are used to implement specific rule forms, with the understandingthat the execution
of a rule always results in a (possibly empty) set of updates. Thus, they include (i) an extension to
the parser defining the concrete syntax of the rule form; (ii) an extension tothe interpreter defining
the semantics of the rule form.

• Policy plug-ins are used to implement specific scheduling policies for multi-agent ASMs. They
provide an extension to the scheduler, that is used to determine at each stepthe next set of agents
to execute8. It is worthwhile to note that only a single scheduling policy can be in force atany
given time, whereas an arbitrary number of background and rule plug-ins can be all in use at the
same time.

In CoreASM, the kernel (see Figure 4) only contains the bare essentials, that is, all that is needed to
execute only the most basic ASM. As the state of an ASM machine is defined by functions and universes,
the two domains offunctionsanduniversesare included in the kernel. Universes are represented through
their characteristic functions, hencebooleansare also included in the kernel. As an ASM program is
defined by a finite number of rules, the domain ofrules is also included in the kernel. It should be

8The policies in these plug-ins can also be called upon for implementing thechoose-rule; an extension plug-in provides an
enhanced version ofchoosethat allows the specifier to explicitly state which policy to use.

84 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

noted that the kernel includes the above mentioned domains, but not all of the expected corresponding
backgrounds. For example, while the domain of booleans (that is,true andfalse) is in the kernel, boolean
algebra (∧, ∨, ¬, etc.) is not, and is instead provided through a background plug-in. In thesame vein,
while universes are represented in the kernel through set characteristic functions, the background of finite
sets is implemented in a plug-in, which provides expression syntax for defining them (see the example in
Figure 5), as well as an implicit representation for storing sets in the abstract state, and implementations
of the various set theoretic operations (e.g.,∈) that work on such implicit representation.

The kernel includes only two types of rules: assignment andimport . This particular choice is moti-
vated by the fact that without updates established by assignments there would be no way of specifying
how the state should evolve, and thatimport has a special status due to its privileged access to the
Reserve. All other rule forms (e.g.,if , choose, forall), as well as sub-machine calls and macros, are
implemented as plug-ins in a standard library, which is implicitly loaded with eachCoreASM specifica-
tion.

Finally, there is a single scheduling policy implemented in the kernel, namely the pseudo-random
selection of a single agent at a time, which is sufficient for multi-agent ASMs where no assumptions are
made on the scheduling policy9.

In addition to modular extensions of the engine, plug-ins can also register themselves forExtension
Points. Each state transition in the execution engine is associated to an extension point. At any extension
point, if there is any plug-in registered for that point, the rule provided by the plug-in at registration time
is executed before the engine proceeds into the new state. Such a mechanism enables extensions to the
engine’s life-cycle which facilitates implementing various practically relevant features such as adding
debugging support, adding a C-like preprocessor, or performing statistical analysis of the behavior of
the simulated machine (e.g., coverage analysis or profiling). A plug-in, for example, could monitor the
updates that are generated by a step before they are actually applied to thecurrent state of the simulated
machine, possibly checking conditions on these updates and thus implementing akind of watches (i.e.,
displaying updates to certain locations) or watch-points (i.e., suspending execution of the engine when
certain updates are generated), which are useful for debugging purposes.

As already mentioned, theCoreASM engine is accompanied by astandard libraryof plug-ins in-
cluding the most common backgrounds and rule forms (i.e., those defined in [16]), an extension library
including a small number of specialized backgrounds and rules, and by a set of specifications for writing
new plug-ins that can easily be integrated in the environment. Extension plug-ins must be explicitly
imported into an ASM specification by an explicitusedirective.

3. TheCoreASM Language

We specify theCoreASM language (both its syntax and the corresponding semantics) through the spec-
ification of an interpreter. The specification of the kernel interpreter presents the core constructs of the
language, which is then extended by standard library plug-ins to include basic ASM constructs such
as the block rule and the conditional rule. The language is then further extended by Turbo ASM rules
such as the sequence rule (seq) and the iterator (iterate). An example of extending the language with
non-standard rules is also provided at the end of this section. For a comprehensive specification of the

9Notice that this particular scheduling policy guarantees the coherence condition of partially ordered runs, which is not guaran-
teed by the general definition of the scheduler, since the latter only checksfor consistency, and not for coherence.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 85

interpreter see [27]. We start this section by presenting the notation that is used in the specification of
the interpreter.

3.1. Notation

We specify the interpreter as a collection of rules (some embedded in the kernel, others contributed
by plug-ins) which traverse a parse tree while evaluating values, locationsand updates. We state the
following assumptions:

1. nodes in the tree are in the domain of the following (mostly partial) functions:

• first : NODE→ NODE, next : NODE→ NODE, parent : NODE→ NODE are static functions
that implement tree navigation; by using these functions, the interpreter can access all the
children nodes of a given node, or go back to its parent, (see Figure 5 for reference);

• class : NODE → CLASS returns the syntactical class of a node (i.e., the name of the corre-
sponding grammar non-terminal class); for exampleRuleDecl

• token: NODE→ TOKEN returns the syntactical token represented by the node (i.e., either a
keyword, an identifier, or a literal value); for example123

• pattern : NODE → PATTERN returns the symbolic name for the specific grammar pattern
corresponding to the node; for exampleIfThen for the patternif . . .then . . .

• [[·]] : NODE→ LOC × UPDATES × ELEMENT holds the result of the interpretation of a node,
given by a triple formed by a location (that is, the l-value of an expression,when it is de-
fined), a multiset of update instructions, and a value (that is, the r-value ofan expression)10.
We access elements and establish properties of such triples through the following derived
functions:

– loc : NODE → LOC returns the location (l-value) associated to the given node, i.e.
loc(n) ≡ [[n]] ↓ 1.

– updates : NODE → UPDATES returns the updates associated to the given node, i.e.
updates(n) ≡ [[n]] ↓ 2.

– value : NODE→ ELEMENT returns the value (r-value) associated to the given node, i.e.
value(n) ≡ [[n]] ↓ 3.

– evaluated: NODE→ BOOLEAN indicates if a node has been fully evaluated. We have,

evaluated(n) ≡ [[n]] 6= undef

• plugin : NODE→ PLUGIN is the plug-in associated to expression and statement nodes, that
is, the plug-in responsible for parsing and evaluation of the node.

2. a special variableposholds at all times the current position in the tree;

10The structure of the triple is intended to be mnemonic, with the l-value in the leftmost and the r-value in the rightmost position
in the triple.

86 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

3. we use a form of pattern matching which allows us to concisely denote complex conditions on the
nodes. In particular:

• we denote with
e
? a generic node;

• we denote with
e

a generic unevaluated node; as an aid to the reader, we will also use
the semantically equivalent

e
e ,

e
r , and

e
l to denote unevaluated nodes whose evaluation is

expected to result respectively, in a value (from an expression), a set of updates (from a rule),
and a location;

• we denote withx an identifier node;

• we denote withv (value) an evaluated expression node (that is, a node whosevalue is not
undef); we denote withu (update set) an evaluated statement node (a node whoseupdatesis
notundef); we denote withl (location) an evaluated expression for which a location has been
computed (a node whoseloc is notundef). We will at times add subscripts to these variables,
or use different names for special cases that will be discussed as appropriate;

• we use prefixed Greek letters to denote positions in the parse tree (typically children of the
current node, as denoted bypos) as inif αe then βr whereα andβ denote, respectively, the
condition node and the then-part node of an if statement;

• rules of the form
L pattern M → actions

are to be intended as
if conditionsthen actions

where theconditionsare derived from the pattern according to the conventions above, as
more formally specified in Table 1; in the action part of such a rule, an unquoted and unbound
occurrence ofl is to be interpreted as theloc of the corresponding node; an unquoted and
unbound occurrence ofv is to be interpreted as thevalue of the corresponding node; an
unquoted and unbound occurrence ofu as theupdatesof the corresponding node; and an
unquoted and unbound occurrence ofx as thetokenof the corresponding node.

Table 2 exemplifies how our compact notation can be translated into actual ASMrules.

4. the value of local variables (e.g., those defined inlet rules) is maintained by a global dynamic
function of the formenv: TOKEN→ ELEMENT

5. a static functionbkg : ELEMENT → BACKGROUND provides, for any arbitrary valuev, the back-
ground of the value orundefif the value is native in the core.

Notice that, according to the ruleExecuteTree previously described in Section 2.2, interpreter rules
in the kernel or from plug-ins are only executed whenevaluated(pos) does not hold, i.e. when the current
node has not been fully evaluated yet. Control moves from node to node either by explicitly assigning
values topos, or by setting[[pos]] to a value that is notundef; in which case, control is returned to the
parent ofposby theExecuteTree rule (unless an explicit assignment topos is also made in the same
step). Hence, the general strategy in our rules will be to evaluate all needed subtrees of a node, if any,
by orderly assigningposaccordingly; when all needed subtrees are evaluated, we compute the resulting

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 87

Abbreviation Condition part Action part

α, β etc. first(pos), next(first(pos)), etc.

syntax pattern pattern(pos)=pattern name
α
e
? class(α) 6= Id

α
e

class(α) 6= Id ∧ ¬evaluated(α)
α
e
e , α

e
r , α

e
l ? class(α) 6= Id ∧ ¬evaluated(α)

αx class(α) = Id token(α)
αv value(α) 6= undef value(α)
αu updates(α) 6= undef updates(α)
αl loc(α) 6= undef loc(α)

? These symbols are semantically equivalent to the
e

symbol; as a visual cue to the reader, the embedded letters express the

intended result of evaluation.

Table 1. Abbreviations in syntactic pattern-matching rules.

Compact notation Actual rule

L if α
e
e then β

e
r M→ pos:= α

if class(pos) 6= Id

∧ pattern(pos) = IfThen

∧ class(first(pos)) 6= Id

∧ ¬evaluated(first(pos))

∧ class(next(first(pos))) 6= Id

∧ ¬evaluated(next(first(pos)))

then

pos:= first(pos)

L if αv then β
e
r M→ if v = tt then . . .

if class(pos) 6= Id

∧ pattern(pos) = IfThen

∧ value(first(pos)) 6= undef

∧ class(next(first(pos))) 6= Id

∧ ¬evaluated(next(first(pos)))

then

if value(first(pos)) = tt then . . .

L if αv then βu M→ . . .

if class(pos) 6= Id

∧ pattern(pos) = IfThen

∧ value(first(pos)) 6= undef

∧ updates(next(first(pos))) 6= undef

then . . .

Table 2. Examples of how pattern matching notation is translated into ASM rules.

88 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

location, updates or value and assign it to[[pos]], thus implicitly returning control back to our parent.
As exemplified in Table 2, our notation allows us to clearly visualize this processby the progressive
substitution of evaluatedu nodes for unevaluated

e
r nodes, and ofv or l nodes for unevaluated

e
e nodes.

Notice that identifiers do not have to be evaluated, hence we do not need a“boxed” version ofx.

3.2. Kernel Interpreter

The kernel behavior of the interpreter which specifies the core constructs of the language is defined by
KernelInterpreter rule (seeExecuteTree in Section 2.2). In this section, we present a definition of this
rule in form of parallel composition of pattern-action rules, which ultimately defines the core syntax and
semantics of the language. The definition is presented in two parts: patterns for expressions and patterns
for rule forms.

3.2.1. Kernel Expression Interpreter

As previously described, kernel rules implement the Boolean domain (but not Boolean algebra), function
evaluation and rule call (which share the same syntactic pattern), assignment, and import statement. We
present in this section rules that result in values, namely for evaluating literals (true, false, undef) and
nullary orn-ary functions.

Literals are simply lifted to their semantic counterparts:

Kernel Expressions: Literals

L true M → [[pos]] := (undef, undef, tt)
L false M → [[pos]] := (undef, undef, ff)
Lundef M → [[pos]] := (undef, undef, uu)

Evaluation of identifiers as expressions depends on whether the identifierrefers to a local variable
or a function. To evaluate an identifier as an expression, the interpreter first checks the set of in-scope
local variables for a possible value for the identifier. If the identifier was not a local variable (i.e., it is
not found in the local environment), the interpreter checks if the identifier refers to a (nullary) function,
in which case the abstract storage is queried for the value of that functionin the current state. If instead
the identifier is not defined, the macroHandleUndefinedIdentifier (which we will describe later) is called.
The rule forn-ary functions is similar, except that the arguments of the function are evaluated first. The
formal definition is as follows:

Kernel Expressions

L αxM → if env(x) 6= undef

[[pos]] := (undef, undef, env(x))

else
if isFunctionName(x) then

let l = (x, 〈〉) in
[[pos]] := (l, undef, getValue(l))

if undefined(x) then
HandleUndefinedIdentifier(x, 〈〉)

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 89

L αx(λ1

e
?1, . . . ,

λn

e
?n) M → if isFunctionName(x) then

choosei ∈ [1..n] with ¬evaluated(λi)

pos:= λi

ifnone
let l = (x, 〈value(λ1), . . . , value(λn)〉) in

[[pos]] := (l, undef, getValue(l))

if undefined(x) then
HandleUndefinedIdentifier(x, 〈λ1, . . . , λn〉)

where

undefined(x) ≡6 ∃e ∈ ELEMENT : name(e) = x

isFunctionName(x) ≡ ∃e ∈ ELEMENT : name(e) = x∧ isFunction(e)

Notice how in the second pattern, the
e
? symbol is used to denote arguments, both unevaluated and

evaluated. Ifx is bound to a function, the rule specifies that all arguments must be evaluated, without
any specific order, to determine the location of the node. While there are still unevaluated arguments, the
rule setsposto a node representing an unevaluated argument; as soon as the evaluationof the argument
is complete, control returns to the parent node (and thus, again to the same rule), until all arguments are
evaluated. At this point (ifnone branch), the location and values of the function are computed and stored
in [[pos]].

Finally, if the interpreter encounters an identifier that is bound to no element inthe state, theHan-
dleUndefinedIdentifier rule will create a new function element with a default value ofundeffor the given
arguments:

HandleUndefinedIdentifier

HandleUndefinedIdentifier (x, args) ≡

let f = new(ELEMENT) do
isFunction(f) := true

name(f) := x

[[pos]] := ((x, args), undef, uu)

Extending the standard definition, but in keeping with common practice, we alsoallow expressions
to refer to functions (and rules, as we will see later), which can thus be treated as first-order objects in
the language. The following rules apply to functions where the function itselfis given as an expression.
In these cases, we first evaluate the expression, and if the result is a function value, we handle it as in the
previous case. Notice though that we do not allow nullary functions to be accessed directly through an
expression, to avoid syntactic ambiguity; in such cases, an empty pair of parenthesis has to be used to
distinguish between the function value itself (without parenthesis) and the value of the nullary function
represented by the function value (with parenthesis).

90 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Kernel Expressions: Application

L α
e

(λ1

e
?1, . . . ,

λn

e
?n) M → pos:= α

L αv(λ1

e
?1, . . . ,

λn

e
?n) M → if isFunction(v) then

choosei ∈ [1..n] with ¬evaluated(λi)

pos:= λi

ifnone
let x = name(v) in

let l = (x, 〈value(λ1), . . . , value(λn)〉) in
[[pos]] := (l, undef, getValue(l))

3.2.2. Kernel Rule Interpreter

Rule plug-ins provide the semantics for executing rules. Execution of rulesresults in a set of update
instructions that is the underlying value for the rule node of the parse tree.As discussed in Section 2.2,
accumulated update instructions are used by the abstract storage to computethe updates set that will
ultimately be applied to the current state to generate the next state.

To evaluate an identifier as a rule, the interpreter first checks if a rule element is bound to the identifier.
If so, theRuleCall macro is called to execute the rule, which we will describe shortly. Notice that inthis
case arguments arenot evaluated prior to calling the rule: in fact, the semantics of rule calls in [16]
prescribes that the entire term used as actual argument must be substitutedto the formal parameter in the
body of the rule, not its value. Also, note that when the rule to call is denotedthrough an expression,
the ruleL α

e
(λ1

e
? 1, . . . ,

λn

e
? n) M→ pos:= α from functional application above applies, hence we do

not need to repeat it here; after evaluation, the patternv(
e
? 1, . . . ,

e
? n) applies, for which we provide here

another rule (mutually exclusive11 with the one for functional application) to handle rule calls.

Kernel Rules

L αxM → if isRuleName(x) then
RuleCall(ruleValue(x), 〈〉)

L αx(λ1

e
?1, . . . ,

λn

e
?n) M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈λ1, . . . , λn〉)

L αv(λ1

e
?1, . . . ,

λn

e
?n) M → if isRule(v) then

RuleCall(v, 〈λ1, . . . , λn〉)

where

isRuleName(x) ≡ ∃e ∈ ELEMENT : name(e) = x∧ isRule(e)

11Mutual exclusion is due to the two guardsisFunctionName(x) andisRuleName(x) which prevent execution of both rules on
the same node.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 91

Traditionally, rule calls in ASMs have been used in two form: as macros, or assub-machines. The
difference between the two forms is that calling a macro simply means executing itsbody (possibly with
parameters substitution) and collecting the resulting updates, whereas running a submachine results in an
entire encapsulated computation of the rule, that is iterated until completion, as defined in [16] Section
4.1.2. Here, we model macro calls, while the effect of submachine calls can simply be achieved by using
the iterate construct (see Section 3.4.1).

As we have already noted, ASMs differ from many other languages in thatcall-by-substitutionis used
for parameters instead of the more usualcall-by-value. In other words, actual parameters are evaluated
at the point of use (in the callee) rather than at the point of call (in the caller). Due to the presence ofseq-
rules, the difference can be observable, as parameters can be evaluated in different states. Hence, we have
to substitute the whole parse tree denoting an actual parameter (i.e., an expression) for each occurrence
of the corresponding formal parameter in the body of the callee. Also, we substitute parameters in a copy
of the callee body, to avoid modifying the original definition.

There are several static semantic constraints on valid rule declarations; for example, it is assumed
that the formal parameters of a rule are all pairwise distinct, and that the formal parameters are the only
freely occurring variables in the body of the rule (see [16], Definition 2.4.18). For simplicity, we do not
explicitly check for such conditions in our specification.

The RuleCall routine, defined below, describes how calls for rules (possibly with parameters) are
handled.

RuleCall

RuleCall (r, args) ≡

if workCopy(pos) = undefthen
let b′ = CopyTreeSub(body(r), param(r), args) in

workCopy(pos) := b′

parent(b′) := pos

pos:= b′

else
[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))

workCopy(pos) := undef

The ruleCopyTreeSub returns a copy of the given parse tree, where every instance of an identifier
node in a given sequence (formal parameters) is substituted by a copy ofthe corresponding parse tree
in another sequence (actual parameters). We assume that the elements in theformal parameters list are
all distinct (i.e., it is not possible to specify the same name for two different parameters). Also, formal
parameters substitution is applied only to occurrences of formal parametersin the original tree passed
as argument, andnot also on the actual parameters themselves. A full definition ofCopyTreeSub is
provided in [27].

The kernel of theCoreASM engine also includes assignment andimport . Assignment is performed
as follows:

92 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

Kernel Rules: Assignment

L α
e
? := β

e
? M → chooseτ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone
if loc(α) 6= undef

[[pos]] := (undef, {|〈loc(α), value(β)〉|}, undef)

else
Error(‘Cannot update a non-location.’)

It is worthwhile to remark that the rule above does not syntactically constrainassignment to be per-
formed exclusively to variables or functions: rather, any plug-in can contribute new forms of expressions
which, as long as they result in a location, are deemed syntactically acceptable in the lhs of an assign-
ment.

The import rule is defined as follows:

KernelInterpreter: import

L import αx do β
e
r M → let e = new(ELEMENT) in

env(x) := e

pos:= β

L import αx do βu M → env(x) := undef // No nesting

[[pos]] := (undef, u, undef)

To perform animport , a new element is created and it is assigned to the value of the given identifier
(x) in the local environment. The rule part

e
r is then evaluated in this new environment by assigningpos

to the corresponding node. The local value of the given identifier is then set toundefwhen the evaluation
of the rule part is complete.

3.3. Standard Library

The CoreASM language is accompanied by a set of plug-ins which provide all the rule forms defined
for Basic ASMs in [16] and several commonly used backgrounds with corresponding operations. These
plug-ins form thestandard libraryof CoreASM, which is implicitly loaded with any specification. Space
limitations prevent us from providing a full account of the standard libraryhere, but we present in this
section a selection of some of these plug-ins to give an intuition of how plug-insare specified.

3.3.1. Standard Rules

We initiate by presenting rule plug-ins for some of the rule forms defined for Basic ASMs. As the reader
will recall, only assignment andimport are defined in the kernel, with almost everything else being
provided by these plug-ins. The most fundamental rule is the block-rule, specified as follows:12

12We provide here a rule for ann-elements block, whereas one for a two-elements block would suffice. Notice also that the
same rule could be used for the alternative syntaxR par Q, meaning thatP andQ are to be executed in parallel. Finally,
also note that we are disregarding here the scope constructors provided by the grammar — either relying on braces{ } or on

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 93

BlockRule

L {λ1

e
? ; . . . ; λn

e
?} M → choosei ∈ [1..n] with ¬evaluated(λi)

pos:= λi

ifnone
[[pos]] := (undef,

⋃
i∈[1..n] updates(λi), undef)

Here, all the rules in a block are evaluated in an unspecified order, with thefinal result being the
union of all the updates13 produced by the various rules in the block.

Close in importance to the block-rule comes theif -rule. We accept a slightly extended syntax, where
the guard is not restricted to be a formula (as per Definition 2.4.14 in [16]), but rather any expression
that returns a Boolean. This guarantees that plug-ins will be able to extendthe set of allowable guards as
needed. Notice that this approach is conservative w.r.t. the standard definition, given that formulae in the
sense of [16] are indeed expressions (supported by the Boolean andQuantifiers plug-ins in our standard
library).

IfRule

L if α
e
e then β

e
r M → pos:= α

L if αv then β
e
r M → if v = tt then pos:= β

else ifv = ff then [[pos]] := (undef, {||}, undef)

elseError(‘Condition must be either true or false.’)

L if αv then βu M → [[pos]] := (undef, u, undef)

L if α
e
e then β

e
r elseγ

e
r M → pos:= α

L if αv then β
e
r elseγ

e
r M → if v = tt then pos:= β

else ifv = ff then pos:= γ

elseError(‘Condition must be either true or false.’)

L if αv then βu elseγ
e
r M → [[pos]] := (undef, u, undef)

L if αv then β
e
r elseγu M → [[pos]] := (undef, u, undef)

To show how the local environment is modified, we present the specificationof the let-rule:

LetRule

L let αx = β
e
e in γ

e
r M → pos:= β

L let αx = βv in γ
e
r M → pos:= γ

env(x) := v

L let αx = βv in γu M → env(x) := undef // No nesting

[[pos]] := (undef, u, undef)

indentation to express nesting are common choices.
13More precisely, the multiset-union of the update instructions returned by therules.

94 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

3.3.2. Standard Expressions

Commonly used expression forms are also added to the language by the standard library. This section ex-
emplifies this approach by presenting three examples: the equivalence operator, the Boolean conjunction
operator, and the integerplusoperator.

In the equivalence operator, two values are considered to be equal if and only if at least one of
their backgrounds regards them as equal. In the following rule, the equality function provided by the
backgrounds of the operands is queried to determine whether they are equal.

Equivalence Operator

L α
e
? = β

e
? M → chooseλ ∈ {α, β} with ¬evaluated(λ)

pos:= λ

ifnone
let e1 = value(α), e2 = value(β) in

let b1 = bkg(e1), b2 = bkg(e2) in
if equalb1(e1, e2) ∨ equalb2(e2, e1) then

[[pos]] := (undef, undef, tt)
else

[[pos]] := (undef, undef, ff)

Boolean operators are also defined in the standard library. The followingrule, as an example, defines
the conjunction operator:

Boolean Operator: AND

L α
e
? ∧ β

e
? M → chooseλ ∈ {α, β} with ¬evaluated(λ)

pos:= λ

ifnone
if (value(α) = tt) ∧ (value(β) = tt) then

[[pos]] := (undef, undef, tt)
else

[[pos]] := (undef, undef, ff)

In the same spirit, the following rule, provided by the Integer plug-in, defines theplus operator on
integer values:

Integer Operator: Plus

L α
e
? + β

e
? M → chooseλ ∈ {α, β} with ¬evaluated(λ)

pos:= λ

ifnone
let v = plusint(value(α), value(β)) in

[[pos]] := (undef, undef, v)

Other operators and standard backgrounds follow in the same vein, and we will not insist here on
their formal definition.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 95

CoreASM defines a special framework to handle operator extensions provided byplug-ins. Such
a framework allows the engine to support operator overloading and reduces the redundancy of operand
evaluation. Operator evaluation and extensions inCoreASM are presented in more detail in [45, Ch. 6].

3.4. Extensions

In addition to basic ASM rules, Turbo ASM rules presented in [16] are alsodefined in theCoreASM
language. In this section we present rule plug-ins for sequentiality, iteration, and exception handling,
following the syntax and semantics presented in [16]. Specifications have toexplicitly import these
plug-ins, differently from those in the standard library which are alwaysimplicitly imported. A number
of other extension plug-ins for commonly used backgrounds and rule forms are distributed together with
theCoreASM engine itself.

3.4.1. Sequentiality and Iteration Rules

Sequential execution of rules is modeled by theseq-rule. Since we want to model the effect of evaluating
the second rule in a sequence in the state that would be produced by applying the updates produced by
the first rule, we have to “simulate” the application of the updates, without really modifying the current
state. This is obtained by using astackof states, managed through three macros:PushState copies the
current state in the stack,PopState retrieves the state from the top of the stack (thus discarding the current
state), andApply(u) applies the updates in the update setu to the current state. In addition, we will use
the macroDiff to compute the update set representing the difference between the current state and the
state at the top of the stack. Formal definitions for these macros are given in[27]. Based on the intuitive
understanding of these macros, the interpreter plug-in for theseq-rule can be specified as follows:

SeqRule

L α
e
r 1 seqβ

e
r 2 M → pos:= α

L αu1 seqβ
e
r 2 M → if isConsistent(u1) then

PushState

Apply(u1)

pos:= β

else
[[pos]] := (undef, u1, undef)

L αu1 seqβu2 M → PopState

[[pos]] := (undef, u1 ⊕ u2, undef)

where the⊕ operator is defined as follows:

U ⊕H = {u ∈ U | location(u) 6∈ locations(H)} ∪H

The intuition behind the definition of⊕ is that updates generated by the first rule are used, except in
cases where the second rule provides a (subsequent) update to the samelocation.

The iterate-rule repeatedly executes its body, until the update set produced is eitherempty or incon-
sistent; at that point, the accumulated updates are computed (the resulting update set can be inconsistent
if the computation of the last step had produced an inconsistent set of updates). The formal definition is

96 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

given below:

Iterate Rule

L iterate α
e
r M → PushState

pos:= α

L iterate αu M → if u = {||} ∨ ¬isConsistent(u) then
[[pos]] := (undef, Diff ∪ u, undef)

PopState

else
Apply(u)

ClearTree(α)

pos:= α

Notice here how iteration is carried on in a separate state, after saving the original one in the stack;
after the iteration is completed, the difference between the initial and the final state is encoded as updates
to the initial state, the initial state is restored from the stack, and the computed updates are returned.
Notice also that, after each step in the iteration, the entire subtree is cleared (i.e., the[[·]] function of each
node is set toundef), so that the computation of the next step can proceed as usual.

3.4.2. Exception Handling

The try/catch construct introduced in [16] lets the specifier declare that inconsistent updates on certain
locations should not abort the current run, but rather be “caught” and handled by executing a given rule.
In particular, the informal semantics for the construct

try r catch l1, . . . , ln do q

is to executer, and if any inconsistent update is generated for any of the locationsl1, . . . , ln, the updates
of r are discarded andq is executed instead. Formally, we specify thetry/catch construct as follows:

ExceptionRule

L try α
e
r 1 catch λ1

e
l 1, . . . ,

λn

e
l n do β

e
r 2 M → pos:= α

L try αu1 catch λ1

e
?1, . . . ,

λn

e
?n do β

e
r 2 M →

choosei ∈ [1..n] with ¬evaluated(λi) do
pos:= λi

ifnone
if isConsistent(u1 � {loc(λ1), . . . , loc(λn)})

then
[[pos]] := (undef, u1, undef)

else
pos:= β

L try αu1 catch λ1 l1, . . . ,
λn ln do βu2 M → [[pos]] := (undef, u2, undef)

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 97

where the� operator is defined as:

U � H = {u ∈ U | location(u) ∈ H}

3.5. Custom Extensions

The CoreASM language can be extended with non-standard rule forms, adding new capabilities and
improving the expressiveness of the language. In this section we present two such custom extensions,
which are not part of theCoreASM library, adding respectively a parallel-case rule and a form of rules
which return a value instead of an update set.

3.5.1. A Parallel-Case Rule

We present here the specification for a plug-in implementing a parallel form of case. The syntax is
similar to the one that is used in [51], but the semantics is quite different. Instead of evaluating the first
rule with a matching guard value, all the rules with matching guard values will be evaluated in parallel.
In essence, this parallel-case rule acts as a block rule in which all child rules are guarded against a given
value.

To evaluate this rule, the case condition will be evaluated first and then all theguards will be evaluated
in an unspecified order. Afterward, rules with a guard value equal to thevalue of the case condition will
be evaluated. Finally, the updates generated by the matching cases are united to form the set of updates
generated by the parallel-case rule. Formally, the construct is defined asfollows:

ParallelCaseRule

L caseα
e
e of {λ1

e
e1 →

λ′

1

e
r 1; . . . ;

λn

e
en →

λ′

n

e
r n} M → pos:= α

L caseαv of {λ1

e
?1 →

λ′

1

e
r 1; . . . ;

λn

e
?n →

λ′

n

e
r n} M →

choosei in [1..n] with ¬evaluated(λi)

pos:= λi

L caseαv of {λ1v1 →
λ′

1

e
?1; . . . ;

λnvn →
λ′

n

e
?n} M →

choosei in [1..n] with equal(v, vi) ∧ ¬evaluated(λ′

i)

pos:= λ′

i

ifnone
[[pos]] := (undef,

⋃
i∈[1..n]∧equal(v,vi)

updates(λ′

i), undef)

3.5.2. Rules with a return value

A frequent and idiomatic use of Turbo ASMs is to compute functions by executing a rule and then
extracting a value from the resulting set of updates, rather than applying the updates to the state. The
syntax provided in [16], however, is not particularly practical, as the computation is restricted to be a
statement assigning a value to a given identifier, and so cannot be used inside a complex expression. For

98 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

example, one has to write

x← R(a1, . . . , an)
y ← Q(b1, . . . , bm)
seq

z := x + y

instead of the more natural

z := R(a1, . . . , an) + Q(b1, . . . , bm)

We propose here an alternative syntax and semantics, formally describedby the following rules:

ReturnRule

L return α
e
e in β

e
r M → pos:= β

L return α
e
e in βu M → PushState

Apply(u)

pos:= α

L return αv in βu M → PopState

[[pos]] := (undef, undef, v)

In this construct, the ruler is executed first; the return expression is evaluated in the state obtained by
provisionally applying the updates fromr to the current state, and the resulting value is returned, while
the updates and the provisional state itself are discarded.

4. Related Work

Machine assistance plays an increasingly important role in making practical systems design feasible.
Specifically, model-based systems engineering demands for abstract executable specifications as a basis
for design exploration and experimental validation through simulation and testing. Thus it is not surpris-
ing that there is a considerable variety of executable ASM languages that have been developed over the
years.

The first generation of tools for running ASM models on real machines goes back to Jim Huggins’
interpreter written inC [38, 42] and, even further back, to the Prolog-based interpreter by Angelica
Kappel [44]. Other interpreters and compilers followed: thelean EA compiler [3] from Karlsruhe
University, thescheme-interpreter [22] from Oslo University, and an experimental EA-to-C++ compiler
developed at Paderborn University. Besides practical work on ASM tools, conceptual frameworks for
more systematic implementations were developed. The work on theevolving algebra abstract machine
(EAM) [19], an abstract formal definition of a universal ASM for executing ASM models, contributed to
a considerably improved understanding of fundamental aspects of makingASMs executable.

Based on such experience, a second generation of more mature ASM toolsand tool environments was
developed:AsmL(ASM Language) [46] and theXasm (Extensible ASM) language [1, 2] are both based
on compilers, while theASM Workbench[18] and AsmGofer[49] provide ASM interpreters.14 The

14We focus here on the more common and well-known ASM tools. For a complete overview, see also [16], Sect. 8.3.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 99

most prominent one is AsmL, developed by the Foundations of Software Engineering group at Microsoft
Research. AsmL is a strongly typed language based on the concepts of ASMs but also incorporates
numerous object-oriented features and constructs for rapid prototypingof component-oriented software,
thus departing in that respect from the theoretical model of ASMs; ratherit comes with the richness of
a fully fledged programming language. At the same time, it lacks any built-in support for dealing with
distributed systems. Being deeply integrated with the software development, documentation, and runtime
environments of Microsoft, its design was shaped by practical needs of dealing with fairly complex
requirements and design specifications for the purpose of software testing; as such, it is oriented towards
the world of code. This has made it less suitable for initial modeling at the peak of the problem space
and also restricts the freedom of experimentation.

TheASM Workbenchis a tool environment supporting software specification, design, and validation
in early design phases and rapid prototyping of embedded systems [20, 17]. The source language for the
ASM Workbench tools is theASM Specification Language(ASM-SL), a strongly typed language with an
ML-like type system based on parametric polymorphism. ASM-SL extends the basic language of ASM
transition rules by introducing additional constructs for defining ASM states, including a collection of
predefined generic data types implementing standard mathematical structures (like tuples, lists, finite
sets, finite maps, etc.) with associated operations. The ASM-SL language is quite concise and close to
standard mathematical notation, making it easily readable and understandable. ASM-SL does however
not provide any built-in support for distributed ASM models. In [50], a compilation scheme for compiling
ASM-SL like specifications to C++ is presented, providing efficient C++ coding while preserving the
structure of the original ASM specification. Based on this work, a proprietary compiler was developed
and used successfully in the FALKO project at Siemens, Munich [14].

Xasm is an open source project [2] and comes with a development environment consisting of an
Xasm-to-C compiler, a run-time system and a graphical interface for debugging and animating Xasm
models. The language provides an interface to C allowing both C-functions tobe used in Xasm programs
as well as Xasm modules to be called from within C-programs. A rapid prototyping tool Gem-Mex,
built around Xasm, assists the designer of a programming language in a number of activities related
to the language life cycle (from early design steps to routine programmer usage). Gem-Mex supports
automatic generation of documentations, generation of language implementationsbased on Xasm code,
and visualization and animation of the static and dynamic behavior of specified languages at a symbolic
level. Xasm in its present form does not support distributed ASMs.

Finally, AsmGofer is an advanced ASM programming system which runs on various platforms, in-
cluding Unix-based or MS-based operating systems. It provides an ASMinterpreter embedded in the
functional programming language Gofer, a subset of Haskell, the de-facto standard for strongly typed
lazy functional programming languages. A widely recognized application ofAsmGofer is its use for
executing the ASM specification of a light control system [15]. As with AsmL,ASM-SL and Xasm,
AsmGofer does also not provide built-in support for distributed ASM models.

In contrast toCoreASM, all the above languages build on predefined type concepts rather than the
untyped language underlying the theoretical model of ASMs; none of these languages comes with a run-
time system supporting the execution of distributed ASM models; only Xasm is designed for systematic
language extensions and in that respect is similar to our approach; however, the Xasm language itself
diverts from the original definition of ASMs and seems closer to a programming language.

100 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

5. Conclusion

We have outlined in this paper the design of theCoreASM extensible execution engine for abstract state
machines. TheCoreASM engine forms the kernel of a novel environment for model-based engineer-
ing of abstract requirements and design specifications in the early phasesof the software development
process. Sensible instruments and tools for writing an initial specification callfor maximal flexibility
and minimal encoding as a prerequisite for easy modifiability of formal specifications, as required in
evolutionary modeling for the purpose of exploring the problem space. The aim of theCoreASM effort
is to address this need for abstractly executable specifications.

Aiming at a most flexible and easily extensibleCoreASM language, most functionalities of the
CoreASM engine are implemented through plug-ins to the basicCoreASM kernel. The architecture
supports plug-ins for backgrounds, rules and scheduling policies, thus providing extensibility in three
different dimensions. Hence,CoreASM adequately supports the need to customize the language for
specific application contexts, making it possible to write concise and understandable specifications with
minimal effort.

The CoreASM language and tool architecture for high-level design, experimental validation and
formal verification of abstract system models is meant to complement other existing approaches like
AsmL and XASM rather than replacing them. As part of future work, we envision an interoperability
layer through which abstract specifications developed inCoreASM can be exported, after adequate
refinement, to AsmL or XASM for further development.

TheCoreASM project [31] is an Open Source project, and as such it is in continuous development.
Currently, the execution engine can execute simple specifications, and various plug-ins for common
backgrounds (e.g., numbers, sets, strings, booleans) are available. More specialized plug-ins have also
been developed, including a plug-in adding support for real time and onefor interfacing ASM specifica-
tions with Java class libraries (including the Java standard library with all its facilities). TheCoreASM
GUI is instead still in early development. We are considering re-designing thefirst GUI, which was
implemented as a stand-alone application, and produce instead a plug-in for the Eclipse integrated devel-
opment environment [24].

Acknowledgements

Our sincere appreciation to Egon Börger for many inspiring discussions and persistent encouragement
on theCoreASM project, as well as his valuable feedback on an early draft version of this paper. We
also thank Mashaal Memon for his contribution to and his active involvement inthe development and
implementation of theCoreASM Engine, and the anonymous reviewers for their precious improvement
suggestions.

References

[1] Anlauff, M.: XASM – An Extensible, Component-Based Abstract State Machines Language,Abstract State
Machines: Theory and Applications(Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, Ed.),1912,
Springer-Verlag, 2000.

[2] Anlauff, M., Kutter, P.: eXtensible Abstract State Machines, XASM open source project:http://www.
xasm.org.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 101

[3] Beckert, B., Posegga, J.: leanEA: A Lean Evolving Algebra Compiler, Proceedings of the Annual Conference
of the European Association for Computer Science Logic (CSL’95) (H. K. Büning, Ed.), 1092, Springer,
1996.

[4] Beierle, C., B̈orger, E., Durdanovic, I., Glässer, U., Riccobene, E.: Refining Abstract Machine Specifications
of the Steam Boiler Control to Well Documented Executable Code, in: Formal Methods for Industrial
Applications. Specifying and Programming the Steam-Boiler Control (J.-R. Abrial, E. B̈orger, H. Langmaack,
Eds.), number 1165 in LNCS, Springer, 1996, 62–78.

[5] Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms,ACM Transactions on Com-
putation Logic, 4(4), 2003, 578–651.

[6] Börger, E.: A Logical Operational Semantics for Full Prolog.Part I: Selection Core and Control,CSL’89. 3rd
Workshop on Computer Science Logic(E. Börger, H. Kleine B̈uning, M. M. Richter, W. Scḧonfeld, Eds.),
440, Springer, 1990.

[7] Börger, E.: A Logical Operational Semantics of Full Prolog. Part II: Built-in Predicates for Database Manip-
ulation, in: Mathematical Foundations of Computer Science(B. Rovan, Ed.), vol. 452 ofLNCS, Springer,
1990, 1–14.

[8] Börger, E.: The Origins and the Development of the ASM Method for High Level System Design and Analy-
sis, Journal of Universal Computer Science, 8(1), 2002, 2–74.

[9] Börger, E.: The ASM Ground Model Method as a Foundation for Requirements Engineering,Verification:
Theory and Practice, 2003.

[10] Börger, E.: The ASM Refinement Method,Formal Aspects of Computing, 2003, 237–257.

[11] Börger, E., Fruja, N. G., Gervasi, V., Stärk, R. F.: A high-level modular definition of the semantics of C#,
Theoretical Computer Science, 336(2/3), May 2005, 235–284.

[12] Börger, E., Gl̈asser, U., M̈uller, W.: The Semantics of Behavioral VHDL’93 Descriptions, EURO-DAC’94.
European Design Automation Conference with EURO-VHDL’94, IEEE CS Press, Los Alamitos, California,
1994.

[13] Börger, E., Gl̈asser, U., M̈uller, W.: Formal Definition of an Abstract VHDL’93 Simulator by EA-Machines,
in: Formal Semantics for VHDL(C. Delgado Kloos, P. T. Breuer, Eds.), Kluwer Academic Publishers, 1995,
107–139.

[14] Börger, E., P̈appinghaus, P., Schmid, J.: Report on a Practical Application of ASMs in Software Design,
Abstract State Machines: Theory and Applications(Y. Gurevich and P. Kutter and M. Odersky and L. Thiele,
Ed.), 1912, Springer-Verlag, 2000.

[15] Börger, E., Riccobene, E., Schmid, J.: Capturing Requirements by Abstract State Machines: The Light
Control Case Study,Journal of Universal Computer Science, 6(7), 2000, 597–620.

[16] Börger, E., Sẗark, R.: Abstract State Machines: A Method for High-Level System Design and Analysis,
Springer-Verlag, 2003.

[17] Castillo, G. D., Gl̈asser, U.: Simulation and Validation of High-level Abstract State Machine Specifications,
Modelling and Simulation: A Tool for the Next Millenium – Proc. of the 13th European Simulation Multicon-
ference(H. Szczerbicka, Ed.), 2, June 1999.

[18] Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Machines,Applied Formal Meth-
ods — FM-Trends 98(D. Hutter, W. Stephan, P. Traverso, M. Ullmann, Eds.), 1641, Springer-Verlag, 1999.

[19] Del Castillo, G., Durdanović, I., Glässer, U.: An Evolving Algebra Abstract Machine, Proceedings of the
Annual Conference of the European Association for ComputerScience Logic (CSL’95) (H. K. B̈uning, Ed.),
1092, Springer, 1996.

102 R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine

[20] Del Castillo, G., Gl̈asser, U.: Computer-Aided Analysis and Validation of Heterogeneous System Specifica-
tions, Computer Aided Systems Theory: Proceedings of the 7th International Workshop on Computer Aided
Systems Theory (EUROCAST’99)(F. Pichler, R. Moreno-Diaz, P. Kopacek, Eds.), 1798, Springer, 2000.

[21] Del Castillo, G., Winter, K.: Model Checking Support for the ASM High-Level Language,Proceedings
of the 6th International Conference TACAS 2000(S. Graf, M. Schwartzbach, Eds.), 1785, Springer-Verlag,
2000.

[22] Diesen, D.: Specifying Algorithms Using Evolving Algebra. Implementation of Functional Programming
Languages, Dr. scient. degree thesis, Dept. of Informatics, University of Oslo, Norway, March 1995.

[23] E. Börger and W. Schulte: A Practical Method for Specification and Analysis of Exception Handling: A
Java/JVM Case Study,IEEE Transactions on Software Engineering, 26(10), October 2000, 872–887.

[24] Eclipse Foundation: Eclipse.org web site, Last visited May 2005,http://www.eclipse.org/.

[25] Eschbach, R., Glässer, U., Gotzhein, R., Prinz, A.: On the Formal Semantics of SDL-2000: A Compilation
Approach Based on an Abstract SDL Machine,Abstract State Machines: Theory and Applications(Y.
Gurevich and P. Kutter and M. Odersky and L. Thiele, Ed.), 1912, Springer-Verlag, 2000.

[26] Farahbod, R., Gervasi, V., Glässer, U.:Design and Specification of the CoreASM Execution Engine, Technical
Report SFU-CMPT-TR-2005-02, Simon Fraser University, February 2005.

[27] Farahbod, R., Gervasi, V., Glässer, U.:Design and Specification of the CoreASM Execution Engine, Technical
report, Simon Fraser University, To be published in October2005, Revised version of SFU-CMPT-TR-2005-
02, February 2005.

[28] Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation ofthe Business Process Execution
Language for Web Services,Abstract State Machines 2004. Advances In Theory And Practice: 11th Inter-
national Workshop (ASM 2004)(W. Zimmermann, B. Thalheim, Eds.), Springer-Verlag, Germany, March
2004.

[29] Farahbod, R., Glässer, U., Vajihollahi, M.:Abstract Operational Semantics of the Business Process Execution
Language for Web Services, Technical Report SFU-CMPT-TR-2005-04, Simon Fraser University, Feb. 2005,
Revised version of SFU-CMPT-TR-2004-03, April 2004.

[30] Farahbod, R., Glässer, U., Vajihollahi, M.: A Formal Semantics for the Business Process Execution Language
for Web Services,Web Services and Model-Driven Enterprise Information Systems(S. Bevinakoppa, et al.,
Eds.), INSTICC Press, Portugal, May 2005.

[31] Farahbod, R., et al.:The CoreASM Project, http://www.coreasm.org.

[32] Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to Generate Tests from ASM Specifications,Ab-
stract State Machines 2003, Springer, 2003.

[33] Glässer, U., Gotzhein, R., Prinz, A.: The formal semantics of SDL-2000: status and perspectives,Comput.
Networks, 42(3), 2003, 343–358.

[34] Glässer, U., Gu, Q.-P.: Formal Description and Analysis of a Distributed Location Service for Mobile Ad
Hoc Networks,Theoretical Computer Science, 336, May 2005, 285–309.

[35] Glässer, U., Gurevich, Y., Veanes, M.: Abstract Communication Model for Distributed Systems,IEEE Trans.
on Soft. Eng., 30(7), July 2004, 458–472.

[36] Gurevich, Y.: Evolving Algebras 1993: Lipari Guide, in: Specification and Validation Methods(E. Börger,
Ed.), Oxford University Press, 1995, 9–36.

[37] Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms,ACM Transactions on
Computational Logic, 1(1), July 2000, 77–111.

R. Farahbod et al. /CoreASM: An Extensible ASM Execution Engine 103

[38] Gurevich, Y., Huggins, J.: Evolving Algebras and Partial Evaluation,IFIP 13th World Computer Congress
(B. Pehrson, I. Simon, Eds.), I: Technology/Foundations, Elsevier, Amsterdam, the Netherlands, 1994.

[39] Gurevich, Y., Tillmann, N.: Partial Updates: Exploration, Journal of Universal Computer Science, 7(11),
2001, 917–951.

[40] Gurevich, Y., Tillmann, N.: Partial Updates,Journal of Theoretical Computer Science, 336(2-3), 2005,
311–342.

[41] Huckle, T.:Collection of Software Bugs, Technical report, Technical University Munich, 2004, Last visited
Sep. 2005,http://www5.in.tum.de/∼huckle/bugse.html.

[42] Huggins, J.:An Offline Partial Evaluator for Evolving Algebras, Technical Report CSE-TR-229-95, Univer-
sity of Michigan, 1995.

[43] ITU-T Recommendation Z.100 Annex F (11/00):SDL Formal Semantics Definition, International Telecom-
munication Union, 2001.

[44] Kappel, A. M.: Executable Specifications Based on Dynamic Algebras, in:Logic Programming and Au-
tomated Reasoning(A. Voronkov, Ed.), vol. 698 ofLecture Notes in Artificial Intelligence, Springer, 1993,
229–240.

[45] Memon, M. A.:Specification Language Design Concepts: Aggregation and Extensibility in CoreASM, Mas-
ter Thesis, Simon Fraser University, Burnaby, Canada, April 2006.

[46] Microsoft FSE Group:The Abstract State Machine Language, Last visited June 2003,http://research.
microsoft.com/fse/asml/.

[47] Müller, W., Ruf, J., Rosenstiel, W.: An ASM Based SystemC Simulation Semantics.,SystemC - Methodolo-
gies and Applications(W. Müller, J. Ruf, W. Rosenstiel, Eds.), Kluwer Academic Publishers, June 2003.

[48] R. Eschbach and U. Glässer and R. Gotzhein and M. von Löwis and A. Prinz: Formal Definition of SDL-
2000: Compiling and Running SDL Specifications as ASM Models, Journal of Universal Computer Science,
7(11), 2001, 1024–1049.

[49] Schmid, J.: Executing ASM Specitications with AsmGofer, Last visited Sep. 2005,www.tydo.de/
AsmGofer/.

[50] Schmid, J.: Compiling Abstract State Machines to C++,Journal of Universal Computer Science, 7(11),
2001, 1068–1087.

[51] Sẗark, R., Schmid, J., B̈orger, E.:Java and the Java Virtual Machine: Definition, Verification,Validation,
Springer-Verlag, 2001.

