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Abstract

In this paper, we study the distributed coordination and control of a set of asyn-
chronous, anonymous, memoryless mobile vehicles that can freely move on a two-
dimensional plane but cannot communicate among themselves. In particular, we
analyze the problem of forming a certain pattern and following a designated vehi-
cle, referred to as the leader, while maintaining the pattern: the flocking problem.

We provide an algorithm to solve the flocking problem, together with theoretical
considerations on its correctness and applicability, and numerical simulation showing
the actual behavior of the algorithm. We also propose two variants of the algorithm
sporting a more stable convergence, and analyze how different conditions on the
equipment available to the vehicles and on the amount of knowledge they share
affect the kind of patterns that can be formed.
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1 Introduction

Control and coordination of a set of autonomous vehicles that can freely move
on a plane 1 is a widely studied topic in robotics. The focus on this kind
of problem has grown in recent years because of the increased interest in
studying systems populated by many, simple units, instead of few, powerful
ones. In particular, these units simply observe the environment by using their
sensors, and react following simple rules: the reaction to the environmental
stimuli is called the behavior of the unit. Despite the simplicity of the units, it
has been shown that these groups of units can exploit rather complex group
behaviors [1,2]. Moreover, such a system is preferable to one made up of just

1 In the literature, such autonomous vehicles are also called robots, mobile robots,
or simply units.
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one large and powerful unit for many reasons: low costs in changing faulty
units; ability to solve tasks otherwise unsolvable by a single unit [3,4] (e.g.,
robots that have to move big objects [5]); certain problems can be solved
quicker [6] (e.g., robots that are asked to clean a room [7]); for fault tolerance
considerations; the decreased cost through simpler individual unit design. An
extensive survey can be found in [8].

One major question that arises is: How is it possible to properly coordinate
these groups of units, such that they can together accomplish what they are
asked to do? And another question is: How simple can these units be [9]?

In this paper we study the flocking problem: a set of vehicles are required to
follow a leader vehicle while keeping a predetermined formation (i.e., they are
required to move in flock, like a group of soldiers). Moreover, the units in
the flock do not know beforehand the path the leader will take: their task is
just to follow him wherever he goes, and to keep the formation while moving.
This is a problem often studied in robotics, with several applications (e.g.
military [10], or in factories, where robots can be asked to move heavy loads).
The approach usually adopted to study this and similar problems, is to design
solutions based on heuristics and tailored on the capabilities of the robots
employed, and then test them by computer simulations, or on real robots.

For instance, in [2] experiments are conducted on a team of simple mobile units
in order to produce complex behaviors, by compounding basic ones (such as
safe-wondering, i.e. the ability to avoid collisions while moving; dispersion, i.e.
the ability of the robots to spread out over an area; aggregation, i.e. the ability
to gather; and homing, i.e. the ability to reach a predetermined destination). In
particular, the author points out that flocking can be obtained combining safe-
wandering, aggregation, dispersion, and homing. Hence, in her experiments,
all the units have a common destination to reach.

T. Balch and C. Arkin studied formation and navigation problems in multi-
robot teams. In particular in [11] the problem of specifying the behavior for
the navigation of a mobile unit is analyzed, and results of both computer
simulation and real experiments are reported. In [10], the approach is extended
to multi-robot teams that navigate the environment maintaining particular
formations: in particular the cases of a line, column, diamond and wedge are
examined. In their study, the authors assumed that the path along which the
group of robots has to move is known in advance to every unit. This same
assumption is made in [12], where the robots are asked to move in a matrix
shape along a path represented by a straight line followed by a right turn and
then a straight line again. In contrast, in this paper we do not assume any
knowledge by the followers of the path that the leader will follow. The only
knowledge the followers have in common is a description of the formation they
have to keep while moving.
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A similar problem is studied in [13], where the author derives equations de-
scribing navigational strategies for robots moving in formation, and following
the movement described by one (ore more) leader. In the studied framework,
the robots have identities, hence their positions in the formation are fixed.
Moreover, in order for the i-th robot to compute its position at time t, it has
to know the position of either the (i − 1)-th robot or the leader at time t.
Hence, some degree of synchrony has to be introduced in order to implement
these strategies.

In this paper, we analyze the flocking problem by using very simple units and
by dropping the assumptions made in other studies, namely

• that all the vehicles in the flock know the path of the leader in advance,
or that they can derive it (e.g. by observing the orientation of the leader’s
prow, or by deriving it by observing the leader in different positions);

• that the vehicles share the same coordinate system;
• that the vehicles have observable identities;
• that they know beforehand their destination point; and
• that they act synchronously.

Following the motivations that prompted previous studies ([14–17]), we adopt
simple units to study the problem: the units are completely anonymous, iden-
tical (no identities are used during the computation), asynchronous, memory-
less, and with no means of direct communication. We describe an algorithm
(the same for all the vehicles) that allows the followers to keep a formation
given to them as input, while following a path determined at run-time by the
leader, that acts completely independently and does not behave according to
the followers’ algorithm. Moreover, we present results of computer simulations
that show the effectiveness of the proposed solution.

2 The model

We consider 2 a system of autonomous mobile units (vehicles). There are two
kinds of vehicles in the environment: the leader and the followers. The leader
acts independently from the others, and we can assume that it is driven by a
human pilot. In the following we will discuss only about the followers.

Each vehicle is capable of observing its surrounding, computing a destination
based on what it observed, and moving towards the computed destination;
hence it performs an (endless) cycle of observing, computing, and moving.

2 The model we adopt is based on the Corda model introduced in [18] and de-
scribed more fully in [17,16]. It has been adapted by taking into account the exis-
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Fig. 1. The local information of each follower: an algorithm (shared with the other
followers), a coordinate system, a unit of length.

Each vehicle has its own local view of the world. This view (see Figure 1)
includes a local Cartesian coordinate system having an origin (that without
losing generality we can assume to be the position of the vehicle), a unit of
length, and the directions of two coordinate axes (which we will refer to as
the x and y axes), together with their orientations, identified as the positive
and negative sides of the axes. In general, there is no agreement among the
followers on the chirality of the local coordinate systems (i.e., the vehicles do
not share the same concept of where North, East, South, and West are).

The vehicles are modeled as units with computational capabilities, which are
able to freely move in the plane. They are equipped with sensors that let
each vehicle observe the positions of the others with respect to their local
coordinate system. Each vehicle is viewed as a point, and can see all the other
vehicles in the flock (and the leader).

The vehicles act totally independently and asynchronously from each other,
and do not rely on any centralized directives, nor on any common notion of
time. Furthermore, they are oblivious, meaning that they do not remember
any previous observation nor computations performed in the previous steps.
Note that this feature, while making the task harder, typically gives to the al-

tance of a distinguished leader.
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gorithms designed in this model the nice property of self-stabilization [19,20] 3 :
in fact, every decision taken by a follower cannot depend on what happened
in the system previously, and hence cannot be based on corrupted data stored
in its local memory. They have as input, however, the same pattern P repre-
senting the flock to be kept. P is described as a set of coordinates in the plane,
relative to a point representing the leader.

The vehicles in the flock are anonymous, meaning that they are a priori indis-
tinguishable by their appearances, and they do not have any kind of identifiers
that can be used during the computation. They can only distinguish if a ve-
hicle is the leader or a fellow follower. Moreover, there are no explicit direct
means of communication; hence the only way they have to acquire information
from the fellow vehicles is by observing their positions 4 .

They execute the same algorithm, which takes as input the observed positions
of the vehicles, and returns a destination point towards which the executing
vehicle moves. A vehicle, asynchronously and independently from the other
vehicles,

(1) observes the environment (Look), by taking a snapshot of the positions of
all other vehicles with respect to its local coordinate system. Each vehicle
is viewed as a point, and therefore its position in the plane is given by
its coordinates. The observation returns the positions of all the other
vehicles in the plane (leader and followers).

(2) It computes a destination point p according to its oblivious algorithm
(Compute); the local computation is based only on the current (i.e., at
the time of the previous Look) locations of the observed vehicles.

(3) Finally, the vehicle moves an unpredictable amount of space towards p
(Move), which is however assumed to be neither infinite, nor infinitesi-
mally small (see Assumption A2 below), and goes back to the Look state.
Hence, there is no assumption on the maximum distance a vehicle can
travel before observing again (apart from the bound given from the des-
tination point that has to be reached).

The life of a follower consists in repeating an endless cycle of states (1)–(3).
Moreover, the only assumptions made in the model are the following:

(A1) The time for a vehicle to complete a Look-Compute-Move cycle is neither
infinite nor infinitesimally small (i.e., is finite and bounded from below).

(A2) For each follower f , there exists an arbitrary (small) constant δf > 0,

3 With the minor exception of errors that bring the vehicles in a configuration that
is not a valid initial configuration for the problem at hand.
4 The obliviousness of the vehicles also renders the observations weaker. In fact,
nothing observed in the past can be remembered, hence used in order to let the
vehicles organize themselves to accomplish their task.
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representing the minimum distance it travels in the Move state; if the com-
puted destination point is closer than δf , f will reach it.

(A3) Since we need to model vehicles that “continuously” move, we assume
that the time spent in looking and computing is negligible compared to the
time spent in moving.

Summarizing, each vehicle moves totally independently and asynchronously
from the others, not having any bound on the time it needs to perform a Move,
hence a cycle (it has to be, however, finite by Assumption A1); therefore, a
vehicle can be seen while it is moving; in addition, they are oblivious, and
anonymous. Moreover, no one of the followers knows in advance the path that
the leader will follow, nor can it derive it at run-time (e.g., by observing the
position of the leader at different times or its heading in order to estimate
its current direction). Their only task is to observe where the leader and the
other followers are, reach an agreement — without communicating — on how
and where to form the pattern in the plane, and move to positions such that
the flock is formed and maintained.

Adopting such “simple” units aims at understanding what kind of complex
tasks can be achieved, and under which conditions (for a detailed discussion
on this model and its motivations, refer to [17,16,21,22]).

3 The flocking problem

In this section we give a formal definition of a family of problems that we call
collectively the Flocking Problem. In particular, we propose two variants of the
problem, and characterize through several metrics the degree of acceptability
of an approximate solution.

3.1 Definitions

Definition 1 (Configuration, Formation) A configuration is a set of dis-
tinct points on a two-dimensional plane. A formation F = {p1, . . . , pn−1, pL}
is a configuration with a distinguished point, pL. We call the distinguished
point the leader of the formation, and the remaining points the followers of
the formation.

We call radius of a formation F, denoted by RF, the maximum distance between
the distinguished point pL and the other points in F:

RF = max
i=1...n−1

dist(pL, pi).
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Configurations are used to model the positions of a set of vehicles, and also to
express the set of points that constitute the desired formation. The formation
whose points are the current positions of the vehicles (including the leader) is
called the (current) fleet (denoted by E), while the formation given in input
to the robots, and whose points represent the desired position of the vehicles
once the flock is formed, is called the pattern (denoted by P). In the following,
we assume that the pattern is expressed in a coordinate system having the
leader as origin and oriented according to the heading of the leader.

In order to assess the degree of success of the flocking, we need a measure of
how well the current fleet approximate the desired pattern. We introduce such
a measure in the following

Definition 2 (D-distance) Given two configurations C = {c1, . . . , cn} and
G = {g1, . . . , gn}, we define the D-distance among them as follows:

D(C,G) = min
π∈Π

|C|∑

i=1

dist(ci, gπ(i))

where Π is the set of all the possible permutations of 1 . . . |C|.

As an aside, we note that other kind of measures can be used. For instance, the
maximum of the sum of the distances, or its average, or the sum of the squares
of the distances. Our experiments, however, have been tested according to the
measure defined in Definition 2.

We can consider that the desired pattern is reached when the vehicles place
themselves in the desired shape, with no regard for the orientation, or we
can ask, in addition, for a specific orientation (typically, corresponding to the
current heading of the leader). These two alternatives are defined formally in
the following

Definition 3 (Target) Given a pattern P and a fleet E, we call an undi-
rected target of the vehicles any formation that is obtained by translating P

so that its leader point coincides with the leader of E, and rotating it by an
arbitrary angle. We denote such a formation with TP,E.

Given, in addition, an angle θ, we call the directed target of the vehicles the
particular undirected target that is rotated by θ. We denote this formation with
T θ

P,E. We call the followers’ positions in a target the slots of the target.

Notice that, given a pattern and the position and heading of the leader, there
are infinite undirected targets, as in Figure 2(a), but only one directed target
oriented according to the heading of the leader, shown in Figure 2(b) — that,
naturally, is also an undirected target.
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Fig. 2. Undirected (a.) and directed (b.) targets. The triangle represents the leader.

a. b.

Fig. 3. (a.) Flocking versus (b.) scaling the pattern.

Remark 4 Notice that while we allow a pattern to be translated (to follow the
leader) and rotated (to be oriented according to the leader’s current direction),
we do not allow it to be scaled. This is in keeping with our idea of a “flock” as a
mobile formation of fixed size. In other words, we do not want the followers to
simply scale the pattern instead of actually following the leader, as in Figure 3,
with the pattern becoming bigger and bigger as the leader goes farther away.

This implies that all the followers must reach an agreement on a shared unit
of measure (since they must be able to know when the pattern has been formed
at the right scale).

Since in our model the leader is constantly moving, while the followers only
execute discrete cycles, it is impossible for them to exactly form and maintain
the pattern at any desired time. To take this effect into account, we introduce
two distinct notions for exactly and approximately forming the pattern in the
definitions below.

Definition 5 (Exact Formation) Given a fleet E and a pattern P, we say
that the followers in E exactly form an undirected target TP,E if

D(E, TP,E) = 0.
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Moreover, if ψ is the heading of the leader, we say that the followers exactly
form the directed target if

D(E, T ψ
P,E) = 0.

We extend the above definitions to the case in which the formation is not kept
exactly.

Definition 6 (Approximate Formation) An undirected target is formed
up to ξ if

D(E, TP,E) ≤ ξ.

Analogously, the directed target is formed up to ξ if

D(E, T ψ
P,E) ≤ ξ.

Finally, we can introduce our formal definition of the Flocking Problem.

Definition 7 (The Flocking Problem) Let f1, . . . , fn−1 be a group of ve-
hicles according to our model, and let L be an additional distinguished leader
vehicle, with heading ψ, whose positions constitute a formation E, and let P

be a pattern given in input to f1, . . . , fn−1. The vehicles solve the exact (resp.
approximate) Flocking Problem if, starting from an arbitrary formation at
time t0, ∃t1 ≥ t0 such that, ∀t ≥ t1 the vehicles exactly (resp. up to ξ) form a
certain target. More specifically, four variants of the flocking problem exists:

• exact undirected flocking: D(E, TP,E) = 0

• exact directed flocking: D(E, T ψ
P,E) = 0

• approximate undirected flocking: D(E, TP,E) ≤ ξ

• approximate directed flocking: D(E, T ψ
P,E) ≤ ξ

The exact flocking variants cannot be solved in our model, since we assume
that the leader moves continuously and arbitrarily, while the followers only
have discrete opportunities for observing the position of the leader and adjust
their course accordingly. Hence, while exact flocking can be considered as
an ideal reference problem, in the following we will concentrate on the two
variants of approximate flocking.

Notice however that, since we characterize through ξ the degree of approxi-
mation, and since we will give conditions that relate ξ to the features of the
vehicles, an arbitrarily good approximation can be obtained.
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Fig. 4. (a.) Limitations on the linear and angular velocity of the leader (b.) Limita-
tions on the duration of a Move.

3.2 Conditions

In order for the problem to be solvable, a number of conditions must be met.
Let vL and ωL be the maximum absolute linear and angular velocity of the
leader, respectively, and let vf be the maximum absolute linear velocity of
follower f . Firstly, the leader must not be too fast, otherwise the followers will
lag behind it and will not be able to maintain the formation. Formally,

vL < min
i
vfi
. (1)

Moreover, the slots must not move too fast for the followers, as a consequence
of the leader changing direction; thus, also the angular velocity of the leader
must be limited, thus obtaining the stronger condition:

vL + ωL ·RP < min
i
vfi
. (2)

In fact, in the worst possible case the leader is moving away from a follower
f while at the same time turning so that the tangential velocity of the points
in T ψ

P,E that f is trying to reach is maximal (see Figure 4(a)).

Secondly, in order to maintain the flocking up to ξ, the time spent in a Move
by a follower must not be too long. Otherwise, the leader could change (in
the worst case, reverse) direction and move away from a follower in the time
between two consecutive Looks, without the follower having a chance to correct
its course (see Figure 4(b)). Formally, let

kf = (vf + vL + ωL ·RP) max
j
τMf (j)

where τMf (j) is the duration of the Move phase of the j-th cycle of the follower

f . In the above definition, kf is the maximum distance that a point in T ψ
P,E may

travel away from f during the longest Move phase of the follower f . Since we
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want that the overall D-distance remains bounded by ξ, the following condition
must be met:

∑

i

kfi ≤ ξ (3)

The condition above is overly restrictive, though, since we consider the maxi-
mum duration for the Move of all the followers. We can state a less restrictive
(but still only sufficient) condition by considering the duration of a Move at
a specified point in time. In detail, let τ̄f (t) be the time between t and the
beginning of the Move of the follower f that is being executed at time t (see
Figure 5). Then,

∀t ≥ t1,
∑

i

(vfi
+ vL + ωL ·RP)τ̄fi

(t) ≤ ξ, (4)

where t1 is as introduced in Definition 7.

4 Basic algorithm for the flocking problem

In this section we present an algorithm to solve the approximate directed
flocking problem that works in the general setting where there is no agreement
on the local coordinate systems. Every follower fi is given in input a pattern
P described as a set p1, . . . p|P| of points, relatives to the leader vehicle, L; we
clearly assume to have |P|−1 followers arbitrarily placed on distinct positions
at the beginning (this defines a valid initial configuration for this problem).

The intuition behind the basic algorithm is described in the following (see
also Figure 6). First, the generic follower f computes the baricenter B of the
followers’ positions (Line 1), by executing Baricenter(Followers) (Followers
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Algorithm 1 The Basic Flocking algorithm

Input: The pattern P to be kept, relative to the leader. Followers and L are
the positions of f1, . . . , fn−1 and of the leader retrieved in the last Look
state, respectively. me represents the position of the robot executing the
algorithm in its own coordinate system, i.e. (0, 0).

B := Baricenter(Followers);
Y := Get Y axis(L,B);
S0 := {robots on Y };
S1 := {robots on the left of Y };

5: S2 := {robots on the right of Y };
F := Final Positions(P, L, Y );
BF := Baricenter(F);
F0 := {final positions on Y };
F1 := {final positions on the left of Y };

10: F2 := {final positions on the right of Y };
For All j = 0, 1, 2 Do

Sort(Fj , L, BF);
Sort(Sj , L, B);

End For
15: Case me in

• S1

k := Rank(me, S1);
If k ≤ |F1| Then

Move(k-th position in F1).
20: Else If k ≤ |F1| + |F0| − |S0| Then

H := {robots in S1 whose rank > |F1|}∪
{robots in S2 whose rank > |F2|};

Sort(H,L,B);
k′ := Rank(me,H);

25: p := (k′ + |S0|)-th slot in F0;
Move(p).

Else
Move((|F2|− (k−|F1|− |F0|+ |S0|)+1)-th position in F2).

• S2

30: /* This case is symmetric to the previous one */
• S0

k := Rank(me, S0);
If k ≤ |F0| Then

Move(k-th position in F0).
35: Else If |S1| ≤ |S2| Then

Move((|F1| − |S1| + (k − |F0|))-th position in F1).
Else

Move((|F2| − |S2| + (|k − |F0|))-th position in F2).
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Fig. 6. Examples of the behavior of Algorithm 1. The filled triangle is the leader,
the filled circles are the followers, and the empty circles the slots the followers want
to reach.

and L are the positions of the followers and of the leader retrieved in the
previous Look state, respectively), and a shared vertical axis Y given by the

line passing through L and B, and oriented according to
−→
BL can be derived:

this is accomplished by Get Y axis(L,B), that returns the axis Y that all
the followers will use to agree on orienting themselves in the plane. 5 Then S0,
S1 and S2, containing respectively vehicles whose positions are exactly on Y ,
to its left, and to its right, are computed (according to the local concept of
left/right of Y ).

At this point, f executes Final Positions(P, L, Y ) (Line 6), that rotates the
points in P, assuming that the leader is moving according to the direction and
orientation of Y , and translates them into the observed leader’s position. The
positions returned by this routine are the slots that the followers will try to
reach. After having computed the baricenter BF of the slots in Line 7, these
positions are partitioned in three subsets: those exactly on Y (F0, Line 8), to
the left of Y (F1, Line 9), and to its right (F2, Line 10). Then, Fj, j = 0, 1, 2,
are sorted in decreasing order with respect to the distances from L and BF

(Line 12), and Sj, j = 0, 1, 2, are sorted in decreasing order with respect to
the distances from L and B (Line 13). These sorting operations are done by
Sort(P, l, b), where P is the array (set of points) to be sorted. In particular,

5 If L = B, the followers can simply wait for the leader to move away from B, or
for some fellow follower that is already moving to break the tie.
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after the sorting, it is guaranteed that

∀i, j, i < j ⇒ (dist(l, pi) > dist(l, pj)) ∨

(dist(l, pi) = dist(l, pj) ∧ dist(b, pi) > dist(b, pj)),

where pi and pj are points in P . Next, the rank k of f in the subset it belongs to
is computed (i.e., the position that f occupies in the sorting), by Rank(me, ·).

Now, if f is the k-th follower in S1, and k ≤ |F1|, then it moves towards
the k-th position in F1 (Line 19; a similar argument applies if f is in S2,
see Line 34). Otherwise, if there are slots available in S0 (i.e., |F0| > |S0| and
k−|F1| ≤ |F0|−|S0|), f is directed towards S0. In particular, Line 21 computes
the set H containing the vehicles in S1 and S2 whose rank is respectively bigger
than |F1| and |F2|; H is then sorted, and the rank k′ of f in H is computed in
Line 24. Then, f is directed towards the (k′+ |S0|)-th slot in F0 (Lines 25–26),
that is towards a slot in F0 that is not a target of vehicles in S0 (refer to Lines
31–38 to see how vehicles in S0 choose their targets). If no position in S0 is
available, f moves towards the (|F2| − (k− |F1| − |F0|+ |S0|) + 1)-th position
in F2, that is towards one of the slots in F2 that are not a destination point of
either a vehicle in S1 whose rank is smaller than k, or of a vehicle in S2 (Line
28).

If f is in S2, the algorithm behaves symmetrically to the case when f is in S1,
provided that the indices 1 and 2 are swapped in the description above.

If f is in S0, and its rank k is smaller than |F0|, then it simply moves towards
the k-th slot in F0 (Line 34). Otherwise, it chooses to move towards the side
that has fewer vehicles (note that if |S1| = |S2|, then it chooses to move
towards a slot in F1). In Figure 6, an example of how the followers choose
their slots is depicted.

Finally, Move(p) moves the executing vehicle towards p, and terminates the
current cycle. As already pointed out in Section 2, in general the vehicle does
not reach p in one Move (the distance it travels is finite, but unpredictable).
Clearly, since the vehicles can not remember p in the next cycle (obliviousness),
this implies that it is possible that f changes its destination point in the next
cycle, because its ranking can change.

Since the vehicles are memoryless, they can not be sure of the direction of
movement of L. They only assume that the leader is going away from B (i.e.

according to
−→
BL). Furthermore, the followers assume that the direction of

movement of L is given by the axis passing through B and L, and oriented from
B towards L, hence they can reach an agreement on Y . They can not, however,
reach in general a similar agreement on X, that is on an axis orthogonal to Y
that would let them agree on the concept of left and right. Hence, the basic
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Fig. 7. An example of how the algorithms work: (a.) the given pattern, (b.) initial
configuration, (c.) shared axis and slots, (d.) ranking and moving.

algorithm applies only to formations that are symmetric with respect to the
direction of movement of L, as better illustrated in Section 4.2.

4.1 A concrete example

Let us suppose that we want the follower to follow and maintain the pattern
described in Figure 7(a). Each follower is given initially as input the set of
coordinates describing the pattern (with the leader occupying position (0,0)
and the common unit of measure), i.e.:

P = {(−10,−10), (−5,−5), (5,−5), (10,−10)}

Let us moreover assume that the initial configuration is the one depicted in
Figure 7(b), with the local coordinate systems of each follower as shown in
the figure.

Of course, each follower will observe different positions for the leader and the
other followers based on its own local coordinate system. For instance, ©a will
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see the leader at (15,10), ©b at (5,15), ©c at (10,0) and ©d at (25,10). ©a will
appear to itself as occupying position (0,0), since each local coordinate system
is centered on the observer.

Analogously, ©b will see the leader at (10,5), ©a at (-5,15), ©c at (5,15), and
©d at (20,5). Thus, ©a will place the baricenter of the followers at (10,6.25),
while ©b will place it at (5,8.75). Both positions are expressed in the local
coordinate system of the observer, and in fact all coincide with the point B
marked by a cross in Figure 7(b).

All the followers now have a shared axis passing through B and the leader.
©a will see this axis as y = 3/4x−5/4, while ©b will see it as y = −3/4x+25/2.
This axis and the position of the leader are used to map the pattern by rotating
and translating the input pattern, as shown in Figure 7(c). Again, each follower
will map the input pattern to different coordinates in the local system, but —
given the shared origin represented by the leader, the shared axis computed
as above, and the common unit of measure — all the followers will in the end
place the slots identically (with the possible exception of the sign of the x
coordinate, that however is not significant for symmetrical patterns).

Next, each follower ranks both the projected slots and all the followers in its
semispace according to the distance from the leader (and, lexicographically,
from the baricenter), as shown in Figure 7(d), and computes its own destina-
tion slot according to the method shown in Figure 6.

Finally, each follower moves towards its computed destination: ©a to slot 1
and ©b to slot 2 in the left semispace, ©c to slot 1 and ©d to slot 2 in the right
semispace. There is no guarantee that the robots will reach their intended
destination with a single move. The next observe-compute-move cycle will
start with the followers at some arbitrary position along their intended course,
while the leader may have arbitrarily moved away from its previous position.

4.2 Applicability of the algorithm

The basic algorithm statistically solves the approximate undirected flocking
problem and the approximate directed flocking problem, provided that

(1) the pattern P = {p1, . . . , pn, L} is symmetric with respect to the axis
passing through L and the baricenter of the other points in P (we call
this kind of patterns lb-symmetric), and

(2) the pattern contains at most 1 point lying on this axis.

In fact, if the pattern is not lb-symmetric, the target slot of a follower robot
depends on whether the follower is in S1 or S2, and thus on whether it should
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Fig. 8. With a non-lb-symmetric pattern, the destination point of a unit depends
on the chirality of the local coordinate system.

try to form the semi-patterns F1 or F2. However, this assignment depends
on the chirality of the local coordinate system (see Figure 8), and thus the
followers cannot generally reach an agreement on the formation to keep. 6

Notice that if the pattern is lb-symmetric, the choice still cannot be made,
but it becomes immaterial since the two semi-patterns are indistinguishable.

Also, if the pattern is lb-symmetric but has more than one position lying on
the

−→
BL axis (see Figure 9), two vehicles could be ranked equal in step 24 of

the algorithm. In this case, the two vehicles would select the same slot on F0

as destination, preventing the correct formation of the pattern. Notice that
for any number m > 2 of slots on the axis, the same problem could happen
when m − 2 slots are taken by as many vehicles, while the two remaining
vehicles occupy symmetric positions as shown in Figure 9. In practice, any
tie of this kind would be broken by any difference in velocity or scheduling of
the competing followers, by any movement of the leader, or by any movement
of fellow followers that would move the baricenter. Thus, in real applications
this restriction could be relaxed without compromising the robustness of the
algorithm.

Another requirement of Algorithm 1 is that

(3) the followers must have common knowledge [23] of the unit of measure.

This is needed to avoid the scaling problem discussed in Remark 4, since the
algorithm does not specify any strategy for deriving a shared unit of measure
that can be maintained invariant at each cycle (remember that in our model
the followers are completely oblivious). Thus, the condition stated in Remark 4

6 In particular, no agreement can be reached if all the vehicles occupy positions that
are symmetric with respect to the

−→
BL axis, while the pattern is not symmetric. See

Section 6.4 for a more detailed discussion on this case and for possible solutions.
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Fig. 9. More than 1 position on the axis.

that all the followers must reach an agreement on the unit of measure is
satisfied by (3).

4.3 Experimental results

To measure how far the vehicles are at time t from the aimed formation, we
use the following functions:

• ∆e(t) = D(E(t), T
φB(t)

P,E(t) ) the distance from the estimated formation, obtained
from the position of the baricenter at time t. In particular, E(t) denotes the

positions of the robots at time t, and T
φB(t)

P,E(t) is the directed target obtained
by translating the leader of P onto the leader of E(t), and by rotating P

of an angle φB(t) such that the baricenter of p1, . . . , pn−1 lies on the line
passing through the leader of E(t) and the baricenter of the followers in
E(t); and

• ∆r(t) = D(E(t), T
ψ(t)

P,E(t)) the distance from the real formation, obtained tak-
ing into account the actual heading of the leader at time t, ψ(t).

In Figure 13, some plots of ∆e and ∆r are reported, relative to a total of 50
computer simulation runs of the algorithm with six followers trying to keep a
wedge shaped formation, four in a line, ten in a spread formation (all shown
in Figure 10), and with random formations. The simulator we developed and
used for our experiments is publicly available on the World Wide Web at
http://www.di.unipi.it/~gervasi/FlockSim.
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Fig. 10. Fleet formations used in the simulations.

Leader
Initial Positions

Fig. 11. Trace of the vehicles while forming and keeping a wedge shaped formation.

In all cases, the simulations started with all the vehicles (leader and followers)
randomly placed in a square area with a side of 512 units. Each vehicle also
had a random direction and orientation of the axes for its local coordinate
system. Each follower had a random velocity between 0.5 and 5.0 units/move,
while the leader’s speed was determined in accordance with the limitations
stated in Section 3.2. The fixed formations used in the experiments are shown
in Figure 10; random formations were obtained by randomly choosing from
two to eight symmetric points in the area delimited by the points (-150,-50)
and (-50,+50), where (0,0) represents the leader and the axes are oriented so
that x coincides with the leader’s direction.

The leader’s course was determined as follows: at all times, the leader would
move forward according to its velocity. At each move, with a probability of
1/20, the leader could start turning to its left or right with an angular speed
limited again according to Section 3.2. If already turning, with the same prob-
ability the leader could stop and continue its course as a straight line. To give
the reader an idea of the actual behaviour of the algorithm, Figures 11 and 12
show the courses of the vehicles in two simulation runs.

In Figure 13, it can be observed how convergence to the estimated formation
(∆e) is obtained on average in less than half the time needed to reach the
real formation. Figure 13 also reveals other interesting phenomena. In the ∆r

graph for the wedge formation, we can observe a “plateau” caused by the
vehicles forming the pattern in exactly the wrong direction, i.e. in front of the
leader rather than behind it. This correctly formed, but incorrectly-headed
pattern, is kept until the leader starts changing its direction, at which point
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Initial positions

Leader

Fig. 12. Trace of the vehicles while forming and keeping the spread formation with
ten vehicles. Note the circular trajectory of the vehicles at the beginning, while
trying to align the formation with the course of the leader.

all the followers rapidly reach their proper positions behind the leader. Related
effects can also be observed in the ∆r graphs for the other formation, in which
instabilities in the distance are caused by the followers trying to catch up with
changes of direction of the leader.

All our experiments demonstrated that the algorithm is properly behaved,
and in all cases the followers were able to assume the desired formation and
to maintain it while following the leader vehicle along its route. Indeed, while
Section 3.2 provides conditions under which the ability of the vehicles to follow
the leader is guaranteed, even when those conditions were relaxed the followers
were usually able to compensate for sudden turns or accelerations of the leader
(as long as the effective speed of the leader remained, at least on average,
lower than that of the slowest follower). As a further remark, we note that the
obliviousness of the algorithm contributes to its robustness, since the followers
do not base their computation on past leader’s positions.

5 Extended algorithms

The algorithm given above does not guarantee convergence, although sim-
ulations show that it provides statistical convergence in most cases. In this
section we briefly discuss the problems with the basic algorithm, and provide
two slightly more complex variations that alleviate these problems.
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Fig. 13. Some plot of the ∆e and ∆r, while forming a line of four vehicles, a wedge

of six vehicles, a spread formation with ten vehicles, and random formations (with
a number of vehicles variable between two and eight).

5.1 Problems with the basic algorithm

The basic algorithm suffers from a number of problems, and is subjected to
somewhat restrictive conditions. In particular:
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(1) The basic algorithm converges rapidly only for approximate undirected
flocking, while convergence in the case of approximate directed flocking is
typically slower. This is caused by the followers’ inability to observe the
real heading of the leader (and by their obliviousness, since they cannot
remember the previous position of the leader and thus cannot compute
its movement vector).

(2) The followers can assume and maintain for an unpredictably long time
a wrong formation. For instance, the followers can assume a formation
that is specular to the correct one, and placed “in front” of the leader
instead of behind it. In such a situation, as long as the leader maintains
an heading that coincides with the

−→
BL axis, the followers will compensate

any movement of the leader towards them by moving farther away, while
keeping the formation on the wrong side and thus reproducing the same
situation.

Problems 1 and 2 can be solved by observing the heading of the leader (i.e.,
by being able to distinguish the prow of the leader from the back), or — with
a better approximation w.r.t. the baricenter — by having enough memory to
store the previous position of the leader.

(3) In certain situations, two or more vehicles could continue changing the
slots they have to reach, causing instability and slowing down or impeding
altogether the convergence of the algorithm.

In the following, we discuss some suggestions that help in fixing some of the
problems pointed out with Algorithm 1.

5.2 The hula-hoop algorithm

A source of instability in the basic algorithm lies in the fact that the ranking
of the vehicles in a semi-space (S1 or S2) can change during the execution.
As a consequence, the assignment of the slots to the vehicles can change, and
this in turn can cause sudden changes of direction of the followers. Although
very rare, it is also theoretically possible that, in pursuing the new slots, two
followers keep exchanging their ranking, so that the flock never stabilizes.

One way to solve this problem consists in ensuring that the initial rankings
among the followers never change during the execution of the algorithm.

In the basic algorithm, the ranking is assigned based on the lexicographical
ordering that is given by the distance from the leader and from the baricenter.
Let f , g and h be the (i − 1)-th, i-th, and (i + 1)-th vehicle in the ranking,
respectively (refer to Figure 14). The area in which the ranking of g does not
change is given by the region delimited by the circles having as center the
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Fig. 14. Strategy for the hula-hoop algorithm.

leader L, and as radius dist(L, f) and dist(L, h) respectively, with distance
from the baricenter being used to discriminate in case of tie (the obvious
extensions apply if g is the first or last vehicle in the ranking). We call this
region the stable space of g.

To try to maintain a stable ranking, each follower has to remain always in its
stable space. This entails:

(1) stopping before crossing the stable space boundary if the target is out-
side the stable space (waiting until the movements of other vehicles have
changed the boundaries, possibly bringing the target inside the stable
space), and

(2) choosing curved trajectories instead of straight ones to reach a target
that is inside the stable space when the straight trajectory would cross
the boundaries.

While the above strategy increases the stability of the algorithm, it is not
sufficient to guarantee it. In fact, it is possible that the movement of the leader,
by changing the distances between the leader and the followers, changes the
ranking of the followers even if they try to stay inside their stable spaces.

5.3 The stripe algorithm

A second variant of our basic algorithm increases the stability by changing
the measure upon which the ranking is based rather than by changing the
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followers’ strategies, as done with the hula-hoop algorithm.

The stripe variant uses a lexicographical ordering of the vehicles in a semi-
space based on the distance from the Y axis, from the leader, and from the
baricenter. More specifically, the Sort(P, l, b) routine in the basic algorithm
is changed so that, after the sorting,

∀i, j, i < j ⇒ (dist(Y, pi) > dist(Y, pj)) ∨

(dist(Y, pi) = dist(Y, pj) ∧ dist(l, pi) > dist(l, pj)) ∨

(dist(Y, pi) = dist(Y, pj) ∧ dist(l, pi) = dist(l, pj) ∧

dist(b, pi) > dist(b, pj))

where dist(Y, p) is the distance between the Y axis (passing through l and b)
and the point p.

In this case, the stable space of a follower is defined as follows (refer to Fig-
ure 15). Let f , g and h be the (i − 1)-th, i-th, and (i + 1)-th vehicle in the
ranking, respectively. The area in which the ranking of g does not change
is given by the stripe parallel to the Y axis and delimited by the lines, also
parallel to the Y axis and passing through f and h, respectively (again, the
obvious extensions apply if g is the first or last vehicle in the ranking).

Also in this case, the followers must take care not to deliberately cross their
stable space boundaries. However, since the stripes are oriented according to
the (estimated) direction of the leader, there is lesser risk that the movements
of the leader can change the ranking and thus introduce instabilities. On the
other hand, this variant is more sensible to variations of the heading of the
leader, especially when the distance between the followers and the leader is
greater than a certain threshold, since the stripes can swipe rapidly. However,
this effect is only significant if the real heading can be observed. When the
heading is estimated via the baricenter, sudden change of estimated heading
are possible only when the baricenter is near the leader, and this in turn
typically only happens when the follower are near the leader, thus rendering
the effects of the swipe less important.

Notice however that there is no need to follow non-rectilinear trajectories.
This variant of the algorithm is thus simpler than the hula-hoop one.

6 Discussion

As can be expected, the amount of shared knowledge among the followers
and their computational and observational capabilities condition the type of
problems that can be solved. In this section, we analyze how different com-
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binations of shared knowledge, observation abilities and amount of memory
influence the kind of flocking problems that can be solved by the followers.

6.1 Observability

Our model already assures us that the positions of the leader and of the
followers are observable by any follower, and all the algorithms presented so
far only rely on this simple capability. If, in addition to that, we can also
observe the heading of the leader (e.g., by observing the direction of its prow),
we can avoid relying on the self-stabilization of a reference point (i.e., the
baricenter) “behind” the leader, and lying along its direction of movement.

In particular, the followers can compute the slots to reach according exactly
to the current direction of the leader, rather than approximating it based on
the

−→
BL axis. Thus, it never happens that the followers stabilize on wrong

directions (e.g., in front of the leader rather than behind it), and convergence
is faster (actually, ∆r coincides with ∆e).

We do not discuss here whether being able to observe the direction of move-
ment of the followers can improve 7 further the convergence. We also do not
investigate the problems related to specific implementation technologies (e.g.,
limited visibility due to occlusion if camera-based equipment is used), leaving
these issues to future research.

7 This would allow some estimation of where the other followers will be at some
future time.
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6.2 Local coordinate systems

We distinguish four different levels of agreement on the direction and orienta-
tion of the coordinate axes.

6.2.1 No agreement

The basic algorithm we presented in Section 4 does not assume any agreement
among the followers on the direction and orientation of the axes. In this case,
we have that:

• The basic algorithm and its variants in Section 5 solve the approximate
undirected flocking problem if the input pattern is lb-symmetric and con-
tains at most 1 point lying on the

−→
BL axis.

• They also solve the approximate directed flocking problem, assuming that
the leader does not indefinitely keep the same direction. In this case con-
vergence is slower than in the previous one.

• If the pattern is lb-symmetric, but contains more than 1 point on the
−→
BL

axis, it may not converge.
• Any deterministic algorithm may not converge if the pattern is not lb-

symmetric.
• A non-deterministic algorithm may reduce the probability of non-

convergence to an arbitrarily small amount (see discussion in Section 6.4)

6.2.2 One axis direction and orientation agreement

In the case in which the followers agree only on the direction of a single axis 8

(and not on its orientation), they can use it and the
−→
BL axis to obtain a

chirality (e.g., by assuming that the clockwise direction for angles goes from
−→
BL towards the acute angle between

−→
BL and the shared axis x). However,

if one of the two shared axes coincides with the
−→
BL axis, no chirality can be

obtained. Thus, in general, having agreement on one axis direction does not
improve the capability of the vehicles to solve the flocking problem.

It should be noted, however, that even if the axes coincide (i.e.,
−→
BL coincides

with either x or y), the followers could simply wait (by executing a Move
towards their current position) until a move by the leader or by a fellow
follower breaks the tie.

Once a chirality is obtained, it can be used to establish a shared orientation
on the common axis. Thus, having agreement on the orientation of the shared

8 Hence, they agree on the direction of both axes.
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axis at the beginning of the computation does not substantially improve the
followers’ capability to solve the problem.

6.2.3 Chirality

The followers can observe L and B, and assume that
−→
BL is a shared Y axis.

Then, given the chirality, all the followers can agree that a shared X axis is
oriented according to the clockwise direction and assume B as the origin. Thus,
given the chirality a complete shared coordinate system can be established.

6.2.4 Two axes

If all the followers agree on the direction and orientation of both axes, any
tie condition can be broken. In particular, the followers can form non lb-
symmetric patterns, and they can also form patterns with more than one slot
on the Y axis.

6.3 Memory

So far we have discussed the case of oblivious algorithms, i.e. the robots can-
not use any memory to store information about previous observations or de-
cisions taken. As we mentioned, this gives the algorithm the property of self-
stabilization. For example, if a vehicle is forcibly displaced by an external
agent, or stops working for a finite period of time, the algorithm will still
solve the problem as soon as the vehicle is allowed to act freely again.

In the following, the consequences of allowing bounded storage capabilities are
discussed.

In particular, if the vehicles can store 1 position (e.g., two real numbers), the
heading of the leader can be inferred by storing the position of the leader at
the time of the last observation and considering the movement vector to the
position observed in the current cycle. In this case, what said in Section 6.1
about being able to observe the real heading of the leader applies.

It is interesting to observe that even with an unbounded amount of mem-
ory (non-oblivious algorithm), the followers cannot form patterns that are not
lb-symmetric. In fact, consider the case in which the initial configuration of
the vehicles is lb-symmetric, while the pattern to be formed is not. Given a
follower v, we call its buddy v′ the follower that occupies the position sym-
metric to that of v in the other semi-space. If, for each follower, its buddy has
the same velocity and moreover their look-compute-move cycles are perfectly
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Fig. 16. Cases of undeterminatedness with lb-symmetric formations with more than
1 point on the BL axis.

synchronized, i.e. they execute the algorithm according to a synchronous acti-
vation schedule, we end up in configurations that maintain the symmetry for
an indefinitely long time. 9 Thus, any number of observations will not provide
a means to break the symmetry, hence storing them does not help.

6.4 Randomization

If we can assume that the vehicles have the ability to take random choices (i.e.,
they are equipped with a proper entropy source), a larger class of problems
can be solved. In particular, Algorithm 1 can be slightly modified in order to
make it applicable also to formations that are not lb-symmetric or have more
than one point lying on the

−→
BL axis.

In the latter case, two difficult cases arise, illustrated in Figure 16:

• when two vehicles (or more) occupy positions lying exactly on the
−→
BL axis,

and two (or more) symmetrical slots are available, one on each semi-space.
Lacking a shared direction for the x axis, the vehicles cannot agree on which
of them should move towards the left-side slot and which towards the right-
side one, and

• when two vehicles (or more) occupy positions that are symmetric w.r.t. the
−→
BL axis, and two (or more) slots on the

−→
BL axis are available. Lacking a

shared direction for the x axis, the vehicles cannot agree on which of them
should move towards which slot.

In such cases, our basic algorithm always chooses a fixed slot as target: towards
the available slot in the local F1 in case a., towards the slot closest to the leader
in case b. Obviously, this strategy does not produce an assignment of vehicles
to slots that covers all the slots. In practice, this “tie” conditions are usually

9 Provided, naturally, that the algorithm employed by the followers is deterministic.
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broken by differences in the velocity of the vehicles and by the asynchronicity
of their cycles.

However, a stronger guarantee can be obtained by randomly choosing the
target slot among the possible candidates in steps 25 and 35 of the algorithm.
In the simplest case, involving only two slots, the probability of two vehicles
always choosing the same target after k cycles is 1/2k. Even if the vehicles have
the same velocity and synchronized cycles, as soon as they choose different
target slots the symmetry is broken and the algorithm can continue normally.

Randomization can be used also in the case of non lb-symmetric formations.
In this case, the algorithm for a follower f can

(1) rank the semi-patterns according to some metric;
(2) rank the semi-spaces according to the same metric;
(3) assign the first semi-space to the first semi-pattern, and the second semi-

space to the second semi-pattern;
(4) rank the vehicles in the semi-space that contains f , and the slots in the

corresponding semi-pattern;
(5) choose a target for f in the semi-pattern corresponding to the semi-space

that contains f , as done in the basic algorithm.

One way to compare configurations for the purpose of ranking semi-patterns
and semi-spaces is defined by the following procedure:

Ranking

Input: Two configurations C and D with |C| = |D|, and two points L and
B.

Output: +1 if C ranks higher than D, 0 if they rank equal, −1 otherwise.
Sort(C,L,B);
Sort(D,L,B);
i := 1;
While i ≤ |C| Do

If (dist(ci, L) > dist(di, L)) ∨ (dist(ci, L) = dist(di, L) ∧ dist(ci, B) >
dist(di, B)) Then

Return +1;
If (dist(ci, L) < dist(di, L)) ∨ (dist(ci, L) = dist(di, L) ∧ dist(ci, B) <
dist(di, B)) Then

Return −1;
i := i + 1;

End While
Return 0;

Notice that the semi-patterns will always rank differently (since the pattern
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is asymmetric). It can happen, however, that the semi-spaces compare equals,

that is, all the vehicles occupy positions that are symmetric w.r.t. the
−→
BL

axis. In this case, the vehicles cannot agree on the assignment of semi-spaces
to semi-pattern. Vehicles observing such a situation can, however, simply make
a Move towards a random point in order to break the tie.

7 Conclusions

In this paper we have defined four variants of the Flocking Problem — fol-
lowing a leader while keeping a fixed formation — for the Corda model. In
Corda, a set of non-communicating, asynchronous and memoryless vehicles
moves on a plane. Each vehicle endlessly executes a look-compute-move cy-
cle, and the target towards which each vehicle moves is computed according
to a common algorithm and to the observed positions of the other vehicles.
We studied under which conditions on the physical capabilities of the vehicles
the problem is solvable, and which degree of precision of the solution can be
obtained depending on their timing characteristics. We have provided an al-
gorithm to solve the approximated directed and undirected flocking problems
in the Corda model.

Our algorithm only assumes that the vehicles share a common unit of distance,
but need not to have a common sense of direction (i.e., a common coordinate
system), nor any a priori knowledge of the path the leader will follow. In fact,
we assume that the followers cannot even observe the direction towards which
the leader is moving (i.e., its prow). Moreover, the followers do not have an
observable identity; in other words, except for the leader, the vehicles are not
distinguishable in any way one from the other.

Indeed, the algorithm we proposed exhibits remarkable robustness, and nu-
meric simulations indicate that in most cases the formation is reached in a
relatively short time and kept after that, as desired. To further improve the
stability of the algorithm, we also proposed two slightly more complex varia-
tions of the same.

The paper also analyzes the kind of patterns that can be successfully formed
by the vehicles, depending on the amount of common knowledge available
to the vehicles and on other computational characteristics (e.g., the amount
of memory available for storing past observations, or the ability to execute
non-deterministic algorithms).

The research reported in this paper lends naturally to several developments.
In particular, we plan to investigate the role of simple communication devices
(e.g., an observable 1-bit state for each vehicle) and limited memory in deter-
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mining which kind of patterns can be formed, and to obtain simulation data
for the extended algorithms presented here. We also intend to study related
problems, like the problem of surrounding an intruder “enemy” vehicle with
friendly units.

While the model and algorithm presented here are essentially of computa-
tional interest, similar problems are found in a number of relevant real-world
applications. These include military applications (automatic battlefield explo-
ration, troopers relocation, etc.), industrial applications (moving heavy loads
by means of many small units, airport luggage dispatch systems, etc.), loco-
motive applications (automatic cars moving in convoy), and many others.

Real-world applications can usually count on a richer equipment: more pow-
erful sensors to provide more information about the environment, on-board
memory to store past observations and plans for the future, more sophisti-
cated actuators, communication devices. We have proved that certain tasks
can be accomplished without such a rich equipment. From a theoretical point
of view, this clarifies the relationship between computability and solvability,
and establishes some fundamental limit to what can be achieved. From a
practical point of view, this allows simpler, more robust and economically ad-
vantageous units to be used instead of costly, complex and less fault-tolerant
units for these tasks.
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