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Abstract. In this paper we introduce a new research effort in making
abstract state machines executable. The aim is to specify and implement
an execution engine for a language that is as close as possible to the
mathematical definition of pure ASM. The paper presents the general
architecture of the engine, together with a high-level description of the
extensibility mechanisms that are used by the engine to accommodate
arbitrary backgrounds, scheduling policies, and new rule forms.

1 Introduction

Abstract state machines are well known for their versatility in modeling com-
plex architectures, languages, protocols and virtually all kinds of sequential and
distributed systems with an orientation toward practical applications. The par-
ticular strength of this approach is the flexibility and universality it provides
as an abstract mathematical framework for semantic modeling of functional
requirements. This is invaluable for bridging the gap between informal require-
ments and precise specifications in the earlier phases of system design. The same
advantages also simplify the task of constructing models of requirements that
are being extracted from implementations in reverse engineering. This usage of
ASMs has extensively been studied by researchers and developers in academia
and industry, leading to the establishment of a solid methodological foundation
providing practical guidelines for building ASM ground models [1]. Widely rec-
ognized applications include semantic foundations of industrial system design
languages like the ITU-T standard for SDL [7], the IEEE language VHDL [3],
programming languages like JAVA [9] and C# [2], communication architectures,
etc.

The research project we describe here focuses on the design of a lean, exe-
cutable ASM language, called CoreASM, in combination with a supporting tool
environment for high-level design, experimental validation and formal verifica-
tion (where appropriate) of abstract system models. We concentrate on control-
intensive software systems, especially, distributed and embedded systems and
related system design languages; we also consider sequential languages and syn-
chronous systems, and, to some extent, hardware related aspects. Specifically,



we are developing a platform-independent engine for executing the CoreASM

language and a graphical user interface (GUI) for interactive visualization and
control of CoreASM simulation runs. The engine comes with a sophisticated and
well defined interface and thereby enables future development and integration
of complementary tools (e.g., for symbolic model checking and automated test
case generation).

Exploring the problem space for the purpose of writing an initial specification
calls for a language that emphasizes freedom of experimentation and supports
easy modifiability. Moreover, such a language must support writing highly ab-
stract and concise specifications by minimizing the need for encoding in mapping
the problem space to a formal model. In our work we address the needs of that
part of the software development process that is closest to the problem space,
as illustrated in Figure 1.
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Fig. 1. Background and Motivation.

Model-based systems engineering naturally demands for abstract executable
specifications as a basis for experimental validation through simulation and test-
ing. Thus it is not surprising that there is a considerable variety of executable
ASM languages (see [4], Section 8.3) that have been developed over the years.
The most prominent one is AsmL (ASM Language)[8], developed by the FSE
group at Microsoft Research. AsmL is an executable language based on the
concept of ASMs but also incorporates numerous object oriented features, thus
departing in this respect from the theoretical model of ASMs, and comes with
the richness of a fully fletched programming language. It also lacks any built-in
support for dealing with distributed systems. Its design was shaped by the prac-
tical needs of dealing with fairly complex requirements and design specifications
for the purpose of software testing; it can be thus said that its primary concerns
are toward the world of code. This has made it less suitable for initial modeling at
the peak of the problem space and also reduces the freedom of experimentation.
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The CoreASM language and tool architecture focus on early phases of the
software design process, and CoreASM primary concerns are toward the world
of problems. In particular, we want to encourage rapid prototyping with ASMs,
starting with mathematically-oriented, abstract and untyped models and grad-
ually refining them down to more concrete versions — a powerful specification
technique that has been exploited in [4]. In this process, we aim at maintaining
executability of even fairly abstract models. Another important characteristics
that differentiate our endeavor from previous experiences is the emphasis that we
are placing on extensibility of the language. Historical developments have shown
how the original, basic definition of ASMs from the Lipari Guide [6] has been
extended many times by adding new rule forms (e.g., choose) or syntactic sugar
(e.g., case). At the same time, many significant specifications need to introduce
special backgrounds3, often with non-standard operations. We want to preserve
in our language the freedom of experimentation that has proved so fruitful in
the development of ASM concepts, and to this end we designed our architecture
around the concept of plug-ins that allows to customize the language to specific
needs.

An extensible, platform independent tool package (the language, its engine,
and the GUI) will be an asset both for industrial engineering of complex software
systems by making software specifications and designs more robust and reliable,
and for researchers that will be able to test in practice proposed extensions to
the basic ASM language.

This paper is structured as follows. Section 2 provides a high-level overview of
the architecture of the CoreASM engine; details of its components are presented
in Section 3, together with a discussion of the extensibility provisions in the
architecture. Section 4 gives an abstract specification of how the CoreASM engine
performs one step of the simulated machine, and Section 5 concludes the paper.

2 Overall Architecture

The CoreASM engine consists of four components: a parser, an interpreter, a
scheduler, and an abstract storage (Figure 2). The interpreter, the scheduler,
and the abstract storage work together to simulate an ASM run. The engine
interacts with the environment through a single interface, called the control
API, which provides various operations such as: load a specification, start a run,
perform a single step, get and set the value of a location, access the update
set produced by a step, et cetera. The operations offered by the control API
provide the foundation for integrating external tools with the execution engine,
thus realizing an open tool architecture for ASMs. We are currently working on
the design and implementation of a graphical execution monitor and debugger.
Other useful applications include experimental validation by means of scripted
execution (test suites) and simulation.

3 We call background a collection of related domains and relations packaged together
as a single unit.
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Fig. 2. Overall Architecture of the CoreASM engine.

The parser reads a CoreASM specification and provides the interpreter with
an annotated parse tree for each program. The interpreter then evaluates the
programs in the specification by examining all the rules and generating update
sets. The abstract storage manages the data model for the abstract state. In
particular, it stores the current state of the machine along with the history of
its previous states. To evaluate a program, the interpreter interacts with the
abstract storage in order to obtain values from the current state and generates
updates for the next state. The role of the scheduler is to orchestrate the whole
execution process. In particular, for distributed ASMs the scheduler is responsi-
ble for selecting the set of agents that will contribute to the next computation
step and coordinates the execution of those agents in that step. The scheduler
also manages cases of inconsistency of update sets generated in a step.

The execution process of a single step in the CoreASM engine is as follows
(Figure 5):

1. The Control API sends a STEP command to the scheduler.
2. The scheduler gets the whole set of agents from the abstract storage.
3. The scheduler selects a set of agents that will perform computation in the

next step.
4. The scheduler selects a single agent and assigns it as the value of self in the

abstract storage.
5. The scheduler then calls the interpreter to run the program of the current

agent (retrieved by accessing program(self) in the current state).
6. The interpreter evaluates the program.4

7. The interpreter notifies the scheduler that the interpretation is completed.

4 This may include a series of interactions between the interpreter and the abstract
storage to get values from the current state, which in turn may require interpreting
other code fragments, e.g., for derived functions.
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8. The scheduler then selects another agent in the selected set of agents. If there
are no more agents left, it calls the abstract storage to fire the accumulated
update set.

9. The abstract storage notifies the scheduler whether the update set has any
conflicts or it was successfully fired. This notification can lead to selection of
a different subset of agents to be executed in the step, or can be sent back
to the Control API.

3 CoreASM Components

In this section we present in more detail the basic components of the CoreASM

engine, together with their extensibility mechanisms. The architecture is parti-
tioned along two dimensions (see Figure 3). The first one, that we already pre-
sented, identifies the four main modules (parser, interpreter, scheduler, abstract
storage) and their relationships. The second dimension, that we will discuss in
Section 3.2, distinguishes between what is in the kernel of the system — thus
implicitly defining the extreme bare bones ASM model — and what is instead
provided by extension plug-ins.

The reader may notice that these two dimension correspond to what in the
ASM literature have been called modular decomposition and conservative refine-
ment respectively. In particular, our plug-ins progressively extend in a conser-
vative way the capabilities of the language accepted by the CoreASM engine, in
the same spirit in which successive layers of the Java [9] and C# [2] languages
have been used to structure the language definition into manageable parts.
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Fig. 3. Layers and Modules of the CoreASM Engine.
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3.1 CoreASM modules

The parser generates annotated abstract syntax trees for rules and programs of
a given CoreASM specification. Each node in these trees may have a reference to
the plug-in where the corresponding syntax is defined. For example in Figure 4,
there are nodes that belong to the backgrounds of sets, integers, and Booleans.
This information will be used by the interpreter and the abstract storage to
perform operations on these nodes with respect to the background each node
comes from.

k q x

x N p x

:=

·() {|}

∧

·()∈

k(q) := {x | x ∈ N ∧ p(x)}

Sets

Boolean

Sets

Int

Fig. 4. Sample Annotated Parse Tree.

The interpreter executes programs and rules. It obtains an annotated parse
tree from the parser and generates an update set. The interpreter interacts with
the abstract storage to retrieve data from the current state and gradually creates
the next update set. All the expressions are evaluated by the interpreter, possibly
calling upon a background plug-in to perform the actual evaluation. Assignments
are interpreted by evaluating the rhs of the assignment with respect to the
current state, evaluating the location addressed by the lhs, and generating an
update that will be returned as the result of the rule.

The abstract storage maintains a representation of the current state of the
machine that is being simulated. It provides interfaces to retrieve values from
a given location in the current state and to apply updates. In addition, it also
provides other auxiliary information about the locations of current state, such
as the ranges and domains of functions or the background to which a particular
function or value belongs to.

Finally, the scheduler orchestrates every computation step of an ASM run.
In a sequential ASM, the scheduler merely arranges the execution of a step:
it receives a step command from the control API, invokes the interpreter, and
instruct the abstract storage to fire the update set (if consistent) when the in-

158



terpreter finishes the evaluation of the program. It then notifies the environment
through the Control API of the results of the step.

For distributed ASMs, the scheduler als has to organize the execution of
agents in each computation step. At the beginning of each DASM computa-
tion step, the scheduler chooses a subset of agents that will contribute to the
computation of the next update set. The scheduler interacts with the abstract
storage to retrieve the current set of DASM agents, to assign the current exe-
cuting agent, and to collect the update set generated by the interpretation of all
the agents’ programs. Updates are then fired and the environment is notified as
for the previous case.

3.2 Plug-ins

In keeping with the micro-kernel spirit of the CoreASM approach, most of the
functionality of the engine is implemented through plug-ins to the basic ker-
nel. The architecture supports three classes of plug-ins: backgrounds, rules and
policies, whose function is described in the following.

– Background plug-ins provide all that is needed to define and work with new
backgrounds, namely (i) an extension to the parser defining the concrete
syntax (operators, literals, static functions, etc.) needed for working with el-
ements of the background; (ii) an extension to the abstract storage providing
encoding and decoding functions for representing elements of the background
for storage purposes, and (iii) an extension to the interpreter providing the
semantics for all the operations defined in the background.

– Rule plug-ins are used to implement specific rule forms, with the basic un-
derstanding that the execution of a rule always results in a (possibly empty)
set of updates. Thus, they include (i) an extension to the parser defining the
concrete syntax of the rule form; (ii) an extension to the interpreter defining
the semantics of the rule form.

– Policy plug-ins are used to implement specific scheduling policies for multi-
agent ASMs. They provide an extension to the scheduler, that is used to
determine at each step the next set of agents to execute5. It is worthwhile to
note that only a single scheduling policy can be in force at any given time,
whereas an arbitrary number of background and rule plug-ins can be all in
use at the same time.

Each class of plug-ins is characterized by an abstract interface, which is used by
the CoreASM engine to communicate with the plugin. A simplified version of the
various interfaces is shown in Section 4, whereas in the actual implementation a
number of additional functions are needed for management purposes.

In CoreASM, the resident kernel (see Figure 3) only contains the bare essen-
tials, that is, all that is needed to execute only the most basic ASM. As an ASM

5 The policies in these plug-ins can also be called upon for implementing the choose-
rule; to this end, we provide an extended version of choose that explicitly declares
which policy to use.
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program is defined to be a finite set of rules, the two domains of finite sets and of
rules are included in the kernel. Finite sets are represented through their char-
acteristic functions, hence functions and booleans are also included in the kernel.
It should be noted that the kernel includes the above mentioned domains, but
not all of the expected corresponding backgrounds. For example, while the do-
main of booleans (that is, true and false) is in the kernel, boolean algebra (∧,
∨, ¬, etc.) is not, and is instead provided through a background plug-in. In the
same vein, while finite sets are in the kernel, infinite ones are implemented in
a plug-in, which provides expression syntax for defining them (see the example
in Figure 4), as well as an implicit representation for storing such sets in the
abstract state, and implementations of the various set theoretic operations (e.g.,
∈) that work on such implicit representation.

The kernel includes only two types of rules: basic update instructions (i.e.,
assignments) and import. This particular choice is motivated by the fact that
without updates there would be no way of specifying how the state should evolve,
and that import has a special status due to its privileged access to the Reserve.
All other rule forms (e.g., if, choose, forall), as well as sub-machine calls and
macros, are implemented as plug-ins.

Finally, there is a single scheduling policy implemented in the kernel, namely
the pseudo-random selection of an arbitrary set of agents at a time, which is suf-
ficient for multi-agent ASMs where no assumptions are made on the scheduling
policy.

The CoreASM engine is accompanied by a standard library of plug-ins includ-
ing the most common backgrounds and rule forms (i.e., those defined in [4]), and
by a set of specifications for writing new plug-ins that can easily be integrated
in the environment. The latter must be explicitly imported into an ASM speci-
fication by an explicit directive, while the former are automatically imported in
every specification by default.

4 An ASM specification for CoreASM

In this section we present a high-level specification of how the CoreASM engine
performs one step of the simulated machine.6 The structure of the specification
is that of a finite state automaton, as shown in Figure 5, whose current state
is given by the variable engineMode (which is used in a case statement that
controls which rules are executed). We present in the following the rules that
are executed in each state (identifying state names with rule names).

The first state entered is the Idle state of the Control API:

Control API
Idle ≡

if stepCommand then

Next(scStartStep)

6 The full specification, of course, models several other commands needed to implement
a complete execution environment.
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Fig. 5. Lifecycle of a STEP command.

This rule simply waits for a “step” command from the environment (e.g.,
an interactive GUI or a debugger), to start the actual computation. We use the
macro Next to transfer control to another state (values for engineMode are tagged
with a 2-letter prefix indicating the module the state belongs to).

The StartStep rule in the scheduler simply initializes updateSet (the set of
accumulated updates for the step) and agentSet (the current set of agents of the
simulated machine). The latter is then assigned a value in the RetrieveAgents

rule by querying the abstract storage module for the current value of agents in
the simulated machine. We model the query process through the abstract macro
GetValue which takes a location and a destination variable and assigns the value
retrieved from the simulated state to the given variable. We use the notation
�term� to denote the quoted variable or literal term term in the simulated
machine.

The next rule, SelectAgents, chooses a set of agents to execute in the current
step; if no agents are available, the step is considered complete. Otherwise, the
ChooseAgent and ChooseNextAgent rules iterate over all selected agents. The
former invokes, for each agent, the SetChosenAgent rule, that will ultimately
come to the ChooseNextAgent rule. Computed updates are progressively added
to updateSet, and when all agents have been run, control moves to FireUpdateSet

in the abstract storage module.
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Scheduler
StartStep ≡

updateSet := {}
agentSet := undef

Next(scRetrieveAgents)

RetrieveAgents ≡
GetValue(agentSet, (�agents�, ()))
selectedAgentSet := undef

Next(scSelectAgents)

SelectAgents ≡
choose s with s ⊆ agentSet ∧ |s| ≥ 1 do

selectedAgentSet := s

Next(scChooseAgent)
ifnone

Next(caStepCompleted)

ChooseAgent ≡
choose a in selectedAgentSet do

remove a from selectedAgentSet

chosenAgent := a

Next(stSetChosenAgent)
ifnone

Next(stF ireUpdateSet)

ChooseNextAgent ≡
add value(root(chosenProgram)) to updateSet

Next(scChooseAgent)

Two rules in the abstract storage module take care of setting the chosen
agent (by assigning the value of self in the simulated machine accordingly)
and of retrieving the program associated with the chosen agent (by accessing
program(self ) in the simulated state). Control then moves back to the scheduler
at the InitiateExecution rule.

Abstract Storage
SetChosenAgent ≡

SetValue((�self�, ()), chosenAgent)
chosenProgram := undef

Next(stGetChosenProgram)

GetChosenProgram ≡
GetValue(chosenProgram, (�program�, (�self�)))
Next(scInitiateExecution)

Following the footsteps of [4], we interpret a program by associating val-
ues (either elements of some domain or updates) and locations to nodes in the
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abstract syntax tree of the program. Before actually starting the interpreter,
previously computed values are deleted by the InitiateExecution rule, and the ini-
tial position for the interpreter is set to the root node of the tree that represents
the current program (that is, the program of the current agent, as established
above).

Scheduler
InitiateExecution ≡

pos := root(chosenProgram)
forall n in nodes(chosenProgram) do

value(n) := undef

loc(n) := undef

Next(inExecuteT ree)

Due to space limitations, we do not include here the full specification for
the interpreter; we show instead its most interesting feature, that is the way
it interacts with rule and background plug-ins to delegate interpretation of the
associated extensions. For a comprehensive specification of the interpreter, the
reader is referred to [5]. As already discussed in Section 3.2, nodes of the parse
tree corresponding to grammar rules provided by a plug-in are annotated with
the plug-in identifier (the annotation is modeled by the plugin function). If a
node is found to refer to a plug-in, rules provided by that plug-in are obtained
through the pluginRule function and executed; otherwise, the kernel interpreter
rules (not detailed here) are used. As a result of the interpretation, value(pos) is
set to either an abstract value (for expression nodes) or to a set of updates (for
rule nodes).

Interpreter
ExecuteTree ≡

if value(pos) = undef then

if plugin(pos) 6= undef then

let R = pluginRule(plugin(pos)) in

R

else

KernelRuleInterpreter

KernelExpressionInterpreter

else

if parent(pos) = undef then

Next(scChooseNextAgent)
else

pos := parent(pos)

After executing the programs of all the agents selected in the SelectAgents

state, all the updates will have been accumulated in updateSet. Control will move
from ChooseAgent to FireUpdateSet in the abstract storage module. The latter
checks the consistency of the updates (possibly interacting with the relevant
background plug-ins to evaluate equality), and either applies the updates to the
current state, thus obtaining the next state, or provides an indication of failure.
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Abstract Storage
FireUpdateSet ≡

if consistent(updateSet) then

ApplyUpdates

Next(scSuccessfulUpdate)
else

Next(scUpdateFailed)

In that case (UpdateFailed rule), a different subset of agents can be tried. If
all possible choices have been exhausted, the computation cannot proceed, and
control moves to the StepFailed state in the control API. If instead updates can
be applied successfully, the StepCompleted state of the control API is entered.

Scheduler
SuccessfulUpdate ≡

Next(caStepCompleted)

UpdateFailed ≡
if morePossibleSets then

Next(scSelectAgents)
else

Next(scStepFailed)

In both cases, the following control API rules notify the environment of the
success or failure of the step, and return to the Idle state awaiting for further
commands from the environment.

Control API
StepCompleted ≡

NotifyEnvironment(success)
Next(caIdle)

StepFailed ≡
NotifyEnvironment(failure)
Next(caIdle)

5 Conclusion

We have outlined in this paper the design of the CoreASM extensible execution
engine for abstract state machines. The CoreASM engine forms the kernel of
a novel environment for model-based engineering of abstract requirements and
design specifications in the early phases of the software development process.
Sensible instruments and tools for writing an initial specification call for maximal
flexibility and minimal encoding as a prerequisite for easy modifiability of formal
specifications, as required in evolutionary modeling for the purpose of exploring
the problem space. The aim of the CoreASM effort is to address this need for
abstractly executable specifications.
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Aiming at a most flexible and easily extensible CoreASM language, most
functionalities of the CoreASM engine are implemented through plug-ins to the
basic CoreASM kernel. The architecture supports plug-ins for backgrounds, rules
and scheduling policies, thus providing extensibility in three different dimen-
sions. Hence, CoreASM adequately supports the need to customize the language
for specific application contexts, making it possible to write concise and under-
standable specifications with minimal effort.

The CoreASM language and tool architecture for high-level design, experi-
mental validation and formal verification of abstract system models is meant
to complement other existing approaches like AsmL and XASM rather than
replacing them. As part of future work, we envision an interoperability layer
through which abstract specifications developed in CoreASM can be exported,
after adequate refinement, to AsmL or XASM for further development.
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