
7
● Design patterns

– Definition
– Example

● Design Patterns in
Distributed systems
– Observer
– Command
– Memento

Design patterns

● Definition
– A design pattern is a tried & tested solution to a

common design problem
● Compare with problem frames:

– A problem frame is a common form of a problem
– A design pattern is a common form of a solution

● … in the design space – there are also patterns in the
implementation, e.g. standard bits of code

● As for all patterns, it's an idea, not a rule
– Amenable to adaptation

Design patterns

● A design pattern is characterized by
– A name
– A description of the problem it aims to solve
– A description of the solution

● Elements of the design
● Relationships among them

– Interactions, responsabilities, collaboration

– A discussion of the consequences of applying
the pattern

● Design trade-offs

An example: MVC

● One of the most famous patterns: Model-
View-Controller

● Originally introduced in the Smalltalk-80 base
library

● Problem: a good general way to handle user
interface components

● Solution: use three different objects, with
well-defined interfaces but arbitrary
implementations
– Model, View, Controller

An example: MVC

● Model: an object that provides a purely
abstract description of the “thing” that is to be
represented by the UI control

● View: an object that, given the data in the
Model, can render it on-screen in some form

● Controller: an object that, given some user
input (e.g., a mouse click or keypress), alters
the Model (or possibly the View) according to
user's intentions

An example: MVC

● The relationship between Model, View and
Controller is dynamic
– It can be set-up and changed at runtime

● e.g., need to disable a GUI element to prevent issuing
of invalid commands? Change its Controller to a
dummy one that ignores all user input

● Each object has precise responsabilities
– Described in terms of the interfaces it must offer

to other objects
● e.g., all Controllers must implement the same interface,

regardless of their actual class

An example: MVC

An example: MVC

● The basic MVC pattern uses 1:1 relationships
between Model, View, Controller

● With further massaging, these can become
n:m relationships

● Most often seen as
multiple views for
the same model
– Hint: in a distributed system,

each view can be on a different
machine and use different media

Design patterns in distributed
systems

● Most design patterns assume that...
– Objects have a private state
– Objects can communicate by invoking operations
– Objects can exchange arbitrary data as

parameters attached to such operations
– Objects have their own control flow

● Either their own thread, or hijacking the control flow of
the caller

● All these properties can be scaled up to units
of a distributed systems
– Computation + memory + message-passing

The Observer pattern

● “Define a one-to-many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically”

● This allows to keep a single copy of the data,
and have multiple other objects depend on
them
– Used e.g. in multi-view MVC
– Can be used for asymmetric replication and

notification in distributed systems

The Observer pattern

● Subject (interface)
– The thing to be

observed
– Maintains a set of

observers
● ConcreteSubject

(object)
– Has the actual state
– Provides operations

to retrieve and alter
the state

The Observer pattern

● Observer (interface)
– The thing to be

notified
● ConcreteObserver

(object)
– Has a local copy of

the remote
ConcreteSubject
state

– Goal is to keep the
copy up-to-date

(note: applicable to parts of state)

The Observer pattern

● Registration
– a.k.a., Subscribe

● An observer calls
subect.attach(self)

● The subject adds the
observer to the set of
current observers

● De-registration
– a.k.a., Unsubscribe

● An observer calls
subject.detach(self)

● The subject removes
the observer from
the set of current
observers

The Observer pattern

● The state of ConcreteSubject changes
– Due to a call to a setState() method or due to

some autonomous event

SetState() could
also be called by a

third party

(e.g., a Controller in MVC)

The Observer pattern

● ConcreteSubject calls notify() of Subject
– Most often, Subject is an abstract class

implementing notify() — could also be an interface

The Observer pattern

● Notify() loops over all registered observers
– Calling update() on each
– Each observer calls getState() on the subject

Observer vs. Publish & Subscribe

● The Observer pattern is a variation of a more
general protocol known as Publish &
Subscribe

● The Subscribe part is identical to registration
and de-registration via attach() and detach()

● The Publish part is more general
– In Observer, the only cause for broadcast are

changes in the state
– In P&S, any event can be published

● Details of the event are often sent as parameters of
update(), not retrieved via separate getState()s

Implementation of Observer

public class Subject {

 List<Observer> obs = new ArrayList<Observer>();

 public Observable() { super(); }

 public void attach(Observer o) { obs.add(o); }

 public void detach(Observer o) { obs.remove(o); }

 public void notify(Object data) {

 for (Observer o: obs) o.update(this, data);

 }

 }
Adapted (and simplified) from java.util.Observable

Implementation of Observer

public interface Observer {

 public void update(Subject s, Object data);

}

Adapted (and simplified) from java.util.Observer

Implementation of Observer

public class concreteSubject extends Subject {

 declarations for concrete state

 constructors etc.

 public void setState(args) {

 updates state based on arguments

 this.notify(object describing change)

 }

 public State getState(args) {

 return state based on arguments

 }

}

Implementation of Observer

public class concreteObserver implements Observer {

 ...

 public void update(Subject s, Object data) {

 ObservedState = s.getState(args);

 Reacts to changes – for example, by

 updating a local copy of the Subject's state,

 or by redrawing a View, etc.

 }

 ...

}

Note: we have omitted for clarity
● Error checking
● Synchronization
● Optimization

Note: we have omitted for clarity
● Error checking
● Synchronization
● Optimization

Observer in a distributed system

● When applied in a
distributed application
– Subject and Observer

often reside on
different nodes

– Communications
among the two can be

● Slow
● Costly
● Unreliable
● Limited capacity

Observer in a distributed system

● Invoking operations
across different nodes
– Several options

● Use CORBA, RMI, or
other RPC mechanisms

● Send a message
encoding the request
according to some
agreed-upon protocol

● Use ad-hoc signaling
– e.g., on receipt of an

SMS with text “update”
the machine will...

Observer in a distributed system

● Invoking operations
across different nodes
– Several options

● Use CORBA, RMI, or
other RPC mechanisms

● Send a message
encoding the request
according to some
agreed-upon protocol

● Use ad-hoc signaling
– e.g., on receipt of an

SMS with text “update”
the machine will...

A theme for a Network
Programming course

(will discuss it later on)

Observer in a distributed system

● Establishing identity
across different nodes
– attach() and detach()

are easy with local
objects

● Storing a pointer to the
observer suffices

– More complex in a
distributed system

● Need some sort of
unique ID

Observer in a distributed system

● Concurrent execution
of updates
– Each node can perform

whatever its own
update() requires in
parallel with others

– No need for a call to
update() to be blocking

● Same holds locally,
proper synchronization

● Use broadcast for
update()

Building a cost model for Observer

● Cost for attach() and detach()
– One call + passing of ID for each
– (possible hidden cost for accessing a network ID)

● Cost for each update()
– One call [for update()] + passing of ID + passing

of data
– One call [for getState()] + passing of state

● Cost for each notify()
– K updates(), with K = number of registered

observers

Building a cost model for Observer

● Cost for attach() and detach()
– One call + passing of ID for each
– (possible hidden cost for accessing a network ID)

● Cost for each update()
– One call [for update()] + passing of ID + passing

of data
– One call [for getState()] + passing of state

● Cost for each notify()
– K updates(), with K = number of registered

observers

These are typically infrequent
operations

In most systems, only performed at
boot-up or shutdown

In some system, performed when a
node joins/leaves the distributed

system

Rarely, hugely dynamic

Building a cost model for Observer

● Cost for attach() and detach()
– One call + passing of ID for each
– (possible hidden cost for accessing a network ID)

● Cost for each update()
– One call [for update()] + passing of ID + passing

of data
– One call [for getState()] + passing of state

● Cost for each notify()
– K updates(), with K = number of registered

observers

This part is paid at each state change

Cost proportional to (serialized) size of
the state and to the number of observers

Can become HUGE!

Optimizing the distributed
Observer

● We need strategies to reduce the cost of
Observer in a distributed application

● Main venues:
– Reduce the number of updates
– Reduce the size of each update
– Reduce the number of observers

● The particular problem will often dictate what is
possible and what is not

● Strike a balance between code complexity
(→ robustness) and performance (→ efficiency)

Reducing the # of updates

● Coalescing
– At times, it is not sensible to send out many little

updates: it's better to coalesce many setState()
calls, then send out a single cumulative notify()

– Add two operations to Subject
● hold() - suspends all updates
● release() - resumes sending out updates

– Also, sends out a first notify() if there was any change w.r.t.
the previous hold()

– Risk: hold() without release()!
– Increases code complexity (e.g., multiple calls)

Reducing the # of updates

● Partitioning
– Upon registration, express interest in some

subset of the state
– Only send out updates to Observers that have

expressed interest in the changed partition
– Equivalent to having many smaller Subjects

● Implementation
– Add a parameter interest to attach() (often, a

bitmask), or

Add an operation setInterest(o,i) to express that
observer o is interested in facet i of the state

Reducing the # of updates

● Flow control
– Stop sending further updates until the Observer

has finished processing the previous set
– Also helps with the overrun concern
– Needs an additional cost to signal completion

● Implementation
– In notify(), use an asynch invocation for update()
– Put every notified Observer in a “suspended” set
– Add an operation done() to resume an observer
– In the implementation of notify(), call done() once

finished

Reducing the # of updates

● Flow control
– Stop sending further updates until the Observer

has finished processing the previous set
– Also helps with the overrun concern
– Needs an additional cost to signal completion

● Implementation
– In notify(), use an asynch invocation for update()
– Put every notified Observer in a “suspended” set
– Add an operation done() to resume an observer
– In the implementation of notify(), call done() once

finished

Might miss intermediate states

Applicable when the “most recent state”
counts, and older states are of little interest
(real-time applications)

Not applicable when all updates are
significant (e.g., financial transactions)

Might miss intermediate states

Applicable when the “most recent state”
counts, and older states are of little interest
(real-time applications)

Not applicable when all updates are
significant (e.g., financial transactions)

Reducing the # of updates

● Shifting responsibility to clients
– Instead of triggering an update at each setState(),

allow clients to call notify() when they think that
observers need to be notified

– Only applicable if clients of the Subject have an
idea about the needs of Observers

– Reduces decoupling, makes systems more
tangled

– Increases chances of missing an update
● i.e., client “forgets” to call notify()

Reducing the size of each update

● Using small getters
– In our scheme, update() has a negligible payload
– getState() is where the largest amount of data is

transferred
– Replace getState() with finer-grain getters

● Each get...() pays the cost of 1 call + the cost for
transferring the data

● Balancing: too many getters to call, and you end up
paying more than a single call to transfer the whole
state

Reducing the size of each update

● Put the payload in update()
– Instead of having update() cause a call to

getState(), pass the state change as parameter
– Opposite to coalescing, friendly to partition

● Implementation
public void setX(T x) {

 T oldValue = x;

 this.x = x;

 notify("x", oldValue, x); update→

}

Reducing the size of each update

● Push model
– Each setX() sends

full notification for
that particular update

– Observer has it all

● Pull model
– Each setX() sends

just a notify(void)
– Observer decides if,

what, when to get...()

● Intermediate models
– Some of the information about a change is sent

with update()
– Some is retrieved by the Observer upon need

Reducing the # of observers

● Rarely we have the luxury of deciding how many
observers we will have
– e.g.: web browsers on a page from our server

● At times, it can be decided at design time
● It might be possible to keep the number of

observers low by dynamic attach()/detach()
– Balancing the cost for those with the cost for updates

● We can set a hard limit
– the (K+1)th attach() will fail
– QoS to already registered observers wins

Complex update strategies

When the update
strategy becomes
complex, it might be
interesting to insulate it
in a separate mediator
object

When the update
strategy becomes
complex, it might be
interesting to insulate it
in a separate mediator
object

The Command pattern

● “Encapsulate a request as an object, thereby
letting you parametrize clients with different
requests, queue or log requests, and support
undoable operations”

● Normally operations are requested by
invoking a method

● With Command, operations are requested by
passing an object
– The object can carry an implementation with it
– BUT, only few communication channels can carry

code

The Command pattern

● Command: an
interface to execute

● an operation
● ConcreteCmd: implements execution
● Client: creates and sends Commands
● Invoker: causes the execution of a Command
● Receiver: knows how to manage Commands

The Command pattern

The Command pattern

● execute() vs. action()
– The Invoker calls execute() on the Command
– execute() in turns calls one or more operations

(action())on the receiver to produce the desired
effect

● Leeway about how much processing should be
done in execute(), and how much in action()
– The Command could be very autonomous and do all

the state changing itself
– The Command could be just a delegate and simply

call an operation of the receiver

Implementing Command

public interface Command {

 public abstract void execute();

}

public class Genesis implements Command {

 public void execute() { universe.start(); }

}

public class Armageddon implements Command {

 public void execute() { universe.stop(); }

}

public class MinorMiracle implements Command {

 public void execute() { universe.setState(...); }

}

Implementing Command

public interface Command {

 public abstract void execute();

}

public class Genesis implements Command {

 public void execute() { universe.start(); }

}

public class Armageddon implements Command {

 public void execute() { universe.stop(); }

}

public class MinorMiracle implements Command {

 public void execute() { universe.setState(...); }

}

Receiver, here accessed statically.

Could be a parameter set in the
constructor of Command.

action() of the Receiver.

Could also be a complex set of
changes, or include significant

business logic

Implementing Command

public interface Invoker {

 public void storeCommand(Command c);

}

public class PermissionInvoker {

 public void storeCommand(Command c) {

 if (requiresPermission(c))

 askUser(c); exception if “No!”←

 c.execute();

} Immediate execution.
Double-checks priviledged Commands.

Immediate execution.
Double-checks priviledged Commands.

Implementing Command

public class UndoInvoker implements Invoker {

 Stack<State> undoStack = new Stack<State>();

 public void storeCommand(Command c) {

 undoStack.push(universe.getState());

 c.execute();

 }

 public void undo() {

 Universe.setState(undoStack.pop());

 }

}
Immediate execution.
Supports undo.

Immediate execution.
Supports undo.

Distributing Command

Remote Client node requests creation of the
Command on the local Receiver node.
Doable, Receiver must provide a set of pre-defined
ConcreteCommands.
Only creation request needs to be transmitted

Remote Client node requests creation of the
Command on the local Receiver node.
Doable, Receiver must provide a set of pre-defined
ConcreteCommands.
Only creation request needs to be transmitted

Distributing Command

Creation and dispatching of Commands is
managed on the Client.
Actual implementation is still on the Receiver
(which again provides a pre-defined set).

Creation and dispatching of Commands is
managed on the Client.
Actual implementation is still on the Receiver
(which again provides a pre-defined set).

Distributing Command

The implementation of Commands is on the Client.
Requires intimate knowledge between
ConcreteCommand and Receiver.
Defeats encapsulation and separation of concerns!
Might require code migration.

The implementation of Commands is on the Client.
Requires intimate knowledge between
ConcreteCommand and Receiver.
Defeats encapsulation and separation of concerns!
Might require code migration.

Distributing Command

Further separation of command management
strategy from actual implementation is possible.
So-called Request Queue Management Systems.
Usable in high-latency, batch systems to implement
logging, journaling, etc.

Further separation of command management
strategy from actual implementation is possible.
So-called Request Queue Management Systems.
Usable in high-latency, batch systems to implement
logging, journaling, etc.

Goals for Command

● Implement delayed execution
– Commands can be queued and executed later

● Implement logging/journaling/stat collection
– A record is kept of who issued which commands

to whom, execution times, etc.
● Implement undo/redo/repeat

– Whenever a command is executed, add it to a list
of undoable operations

– Command can have undo() and redo()
– Alternatively, can use a stack of states

Goals for Command

● Implement Command queue inspection
techniques
– Buffering and coalescing commands

● “only last valid command counts”

– Accumulation
● Transform move(dx1, dy1); move(dx2, dy2) to

move(dx1+dx2, dy1+dy2)

● Implement preemptible Commands
– Allows changing your mind

● Send! — then, you can press Cancel sending in the
next 5 seconds

Goals for Command

● Allows multiple sources for the same
Command
– An icon in the tool bar
– A menu entry
– A keyboard shortcut
– A scripting interface

● Allows multiple destinations for the same
Command
– “Cut” can be sent to a text, to a picture, to a

sound sample...

The Memento pattern

● “Without violating encapsulation, capture and
externalize an object's internal state so that
the object can be resotred to this state later”

● In practice, we want an opaque container for
the private state of some object
– The owner can “lend” the state to someone else
– Only the owner can recover the internal state
– Still, the opaque state can be stored, transmitted

etc.

The Memento pattern

● Originator has the state, can create Mementos
● Memento holds the state in the opaque form
● Caretaker can only store/retrieve/pass

Mementos

The Memento pattern

The Memento pattern

When Caretaker requests a Memento, the
Originator creates a new Memento object, fills in its
state, and return the Memento to the Caretaker

When Caretaker requests a Memento, the
Originator creates a new Memento object, fills in its
state, and return the Memento to the Caretaker

The Memento pattern

Later on, Caretaker restores the Memento; the
Originator extracts its state from it, and sets the
extracted state as its own state.

There is no need for the saved state to be the full
state of the Originator.

Later on, Caretaker restores the Memento; the
Originator extracts its state from it, and sets the
extracted state as its own state.

There is no need for the saved state to be the full
state of the Originator.

Distributing Memento Memento spans
both nodes

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59
	Pagina 60
	Pagina 61

